Publications
231. M. Tan, F. Freire-Fernandez, and T. W. Odom, ACS Nano 18, 23181-23188 (2024). “Symmetry-guided Engineering of Polarization by 2D Moiré Metasurfaces.“ DOI: 10.1021/acsnano.4c05714
230. F. Esmaeili, Y.L. Wu, Z. Wang, A. Abdrabou, V.B. Juska, H. Zargartalebi, C.D. Flynn, T.W. Odom, E.H. Sargent, and S.O. Kelley, ACS Nano 18, 21554-21564 (2024). “Spiky Gold Nanoparticles, a Nanoscale Approach to Enhanced Ex Vivo T-Cell Activation.” DOI: 10.1021/acsnano.4c07306
229. O. Morshed, M. Amin, N. M. B. Cogan, E. R. Koessler, R. Collison, T. M. Tumiel, W. Girten, F. Awan, L. Mathis, P. Huo, A. N. Vamivakas, T. W. Odom, and T. D. Krauss. J. Chem. Phys. 161, 014710 (2024). “Room-Temperature Strong Coupling between CdSe Nanoplatelets and a Metal-DBR Fabry-Pérot Cavity.” DOI: 10.1063/5.0210700
228. F.M. Fasanelli, F. Freire-Fernández, and T.W. Odom, Adv. Opt. Mater. 12, 2400797 (2024). “Symmetry-Determined Lasing from Incommensurate Moiré Nanoparticle Lattices.” DOI: 10.1002/adom.202400797
227. N. Sinai, C. Dones Lassalle, J. Kelm, S. Patel, S.-M. Park, M. Tan, T.W. Odom, and J. Dempsey, Nano Lett. 24, 7491-7498 (2024). “Electrochemical Control of Strong Coupling of CdSe Exciton-Polaritons in Plasmonic Cavities.” DOI: 10.1021/acs.nanolett.4c01790
226. F. Freire-Fernandez; N. Sinai, M. Tan, S.-M. Park, E. Koessler, T. Krauss, P. Huo, and T.W. Odom, ACS Nano 18, 15177-15184 (2024). “Room-Temperature Polariton Lasing from CdSe core-only Nanoplatelets.” DOI: 10.1021/acsnano.4c03164.
225. A. Boddeti, Y. Wang, X.G. Juarez, A. Boltasseva, T.W. Odom, V. Shalaev, H. Alaeia, and Z. Jacob, Phys. Rev. Lett. 132, 173803 (2024). “Reducing Effective System Dimensionality with Long-Range Collective Dipole-Dipole Interactions.” DOI: 10.1103/PhysRevLett.132.173803.
224. M. Tan, S. Patel, J. Chiu, Z. Zheng, and T.W. Odom, J. Chem. Phys. 160, 154703 (2024). “Liquid Lasing from Solutions of Ligand-Engineered Semiconductor Nanocrystals.” DOI: 10.1063/5.0201731.
223. B. Diloknawarit, K. Lee, P. Choo, and T.W. Odom, ACS Nano 18, 12537-12546 (2024). “Nanoparticle Anisotropy Increases Targeting Interactions on Live-Cell Membranes.” DOI: 10.1021/acsnano.4c02700.
222. X. G. Juarez, F. Freire-Fernandez, S. Khorasani, M. R. Bourgeois, Y. Wang, D. J. Masiello, G. C. Schatz, and T. W. Odom, ACS Photonics 11, 673-681 (2024). “Chiral Optical Properties of Plasmonic Kagome Lattices.” DOI: 10.1021/acsphotonics.3c01518.
221. Y. Wu, K. Lee, B. Diloknawarit, and T. W. Odom, Nano Letters 24, 519-524 (2024). “Ligand Separation on Nanoconstructs Affects Targeting Selectivity to Protein Dimers on Cell Membranes.” DOI: 10.1021/acs.nanolett.3c04641.
220. J. Jia, N. Metzkow, S.-M. Park, Y. L. Wu, A. D. Sample, B. Diloknawarit, I. Jung, and T. W. Odom, Nano Letters 23, 11260-11265 (2023). “Spike Growth on Patterned Gold Nanoparticle Scaffolds.” DOI: 10.1021/acs.nanolett.3c03778.
219. J. M. Buriak, X. Chen, and T. W. Odom, ACS Nano 17, 17587-17599 (2023). “Remembering Zijie Yan – A Master of Light and Matter, with Nanometer Precision.” DOI:10.1021/acsnano.3c08506
218. F. Freire Fernandez, T. Reese, J. Guan, R. Li, R. Schaller, G. C. Schatz, and T. W. Odom, ACS Nano 17, 21905-21911 (2023). “Quasi-Random Multi-Metallic Nanoparticle Arrays.” DOI: 10.1021/acsnano.3c08247.
217. D. Wang, J. Hu, G. C. Schatz, and T. W. Odom, J. Phys. Chem. Lett. 14, 8525-8530 (2023). “Superlattice Surface Lattice Resonances in Plasmonic Nanoparticle Arrays with Patterned Dielectrics.” DOI:10.1021/acs.jpclett.3c02158
216. L. Jin, A. D. Sample, D. Sun, Y. Gao, S. Deng, R. Li, L. Dou, T. W. Odom, and L. Huang. ACS Photonics 10, 1983-1991 (2023). “Enhanced Two-Dimensional Exciton Propagation via Strong Light–Matter Coupling with Surface Lattice Plasmons.” DOI:10.1021/acsphotonics.3c00466
215. D. Rhee, Y.-A. L. Lee, and T. W. Odom, ACS Nano 17, 6781-6788 (2023). “Area-Specific, Hierarchical Nanowrinkling of Two-Dimensional Materials.” DOI:10.1021/acsnano.3c00033
214. J. Guan, J. Hu, Y. Wang, G. C. Schatz, T. W. Odom, Nat. Nanotechnol. 18, 514-520 (2023). “Far-field coupling between moiré photonic lattices” DOI:10.1038/s41565-023-01320-7
213. A. D. Sample, J. Guan, J. Hu, F. Freire-Fernandez, S.-M. Park, R. D. Schaller, G. C. Schatz, T. W. Odom, J. Phys. Chem. C. 126, 18778-18783 (2022). “Polariton Formation from Soret Band Excitons in MetalOrganic Frameworks and Plasmonic Lattices.” DOI:10.1021/acs.jpcc.2c05464
212. C.-W. Qiu, T. W. Odom, Chem. Rev. 19, 14987-14989 (2022). “Introduction: Chemistry of Metamaterials” DOI:10.1021/acs.chemrev.2c00541
211. M. J. H. Tan, J.-E. Park, F. Freire-Fernandez, J. Guan, X. G. Juarez, T. W. Odom, Adv. Mater. 34, 2203999 (2022). “Lasing Action from Quasi-propagating Modes.” DOI:10.1002/adma.202203999
210. J. Guan, J.-E. Park, S. Deng, M. Tan, J. Hu, T. W. Odom, Chemical Reviews, 19, 15177-15203 (2022). “Light-Matter Interactions in Hybrid Material Metasurfaces.” DOI:10.1021/acs.chemrev.2c00011
209. S. Deng, J.-E. Park, G. Kang, J. Guan, R. Li, G. C. Schatz, T. W. Odom, PNAS. 22, e2202621119 (2022). “Interfacial Engineering of Plasmonic Nanoparticle Metasurfaces.” DOI:10.1073/pnas.2202621119
208. T. W. Odom, Nano Lett. 22, 2163 (2022). “Nano Letters Seed Grants.” DOI: 10.1021/acs.nanolett.2c00971
207. K. Lee, I. Jung, T. W. Odom, J. Am. Chem. Soc. 12, 5274-5279 (2022). “Delivery Order of Nanoconstructs Affects Intracellular Trafficking by Endosomes.” DOI:10.1021/jacs.2c02276
206. J-E. Park, R. Lopez-Arteaga, A. D. Sample, C. R. Cherqui, I. Spanopoulos, J. Guan, M. G. Kanatzidis, G. C. Schatz, E. A. Weiss, T. W. Odom, ACS Nano. 16, 3917-3925 (2022). “Polariton Dynamics in Two-Dimensional Ruddlesden-Popper Perovskites Strongly Coupled with Plasmonic Lattices.” DOI:10.1021/acsnano.1c09296
205. P. Choo, D. Arenas-Estban, I. Jung, W. J. Chang, E. A. Weiss, S. Bals, T. W. Odom ACS Nano 3, 4408-4414 (2022). “Investigating Reaction Intermediates during the Seedless Growth of Gold Nanostars Using Electron Tomography” DOI:10.1021/acsnano.1c10669
204. T. W. Odom, Nano Lett. 22, 1–2 (2022). “Nano Letters in the Time of COVID-19.” DOI:10.1021/acs.nanolett.1c04813
203. X. G. Juarez, R. Li, J. Guan, T. Reese, R. D. Schaller, and T. W. Odom, ACS Photonics 9, 52-58 (2022). “M-Point Lasing in Hexagonal and Honeycomb Plasmonic Lattices.” DOI:10.1021/acsphotonics.1c01618
202. A. K. Boddeti, J. Guan, T. Sentz, X. Jaurez, W. Newman, C. Cortes, T. W. Odom, Z. Jacob, Nano Lett. 22, 22-28 (2021) “Long-Range Dipole-Dipole Interactions in a Plasmonic Lattic.” DOI:10.1021/acs.nanolett.1c02835
201. Y.-A. L. Lee, Z. Mousavikhamene, A. K. Amrithanath, S. M. Neidhart, S. Krishnaswamy, G. C. Schatz, and T. W. Odom, Small 1, 2103865 (2021). “Programmable Self-Regulation with Wrinkled Hydrogels and Plasmonic Nanoparticle Lattices,” DOI:10.1002/smll.202103865
200. N. E. Watkins, J. Guan, B. T. Diroll, K. R. Williams, R. D. Schaller, and T. W. Odom, J. Phys. Chem. C 36, 19874-19879 (2021). “Surface Normal Lasing from CdSe Nanoplatelets Coupled to Aluminum Plasmonic Nanoparticle Lattices,” DOI:10.1021/acs.jpcc.1c05662
199. A. D. Sample, J. Guan, J. Hu, T. Reese, C. R. Cherqui, J. Park, F. Freire-Fernández, R. D. Schaller, G. C. Schatz, and T. W. Odom, Nano Letters 28, 7775-7780 (2021). “Strong Coupling Between Plasmons and Moleular Excitons in Metal-Organic Frameworks” DOI: 10.1021/acs.nanolett.1c0274
198. J. Guan, R. Li, X. G. Juarez, A. D. Sample, Y. Wang, G. C. Schatz, and T. W. Odom, Adv. Mater. 2103262 (2021). “Plasmonic Nanoparticle Lattice Devices for White-Light Lasing,” DOI:10.1002/adma.202103262
197. T. Reese, A.N. Reed, A.D. Sample, F. Freire-Fernández, R.D. Schaller, A.U. Urbas, and T.W. Odom, ACS Photonics 8, 1556-1561 (2021). “Ultrafast Spectroscopy of Plasmonic Titanium Nitride Nanoparticle Lattices,” DOI: 10.1021/acsphotonics.1c00297
196. J. Zhang, W-K. Lee, R. Tu, D. Rhee, R. Zhao, X. Wang, X. Liu, X. Hu, X. Zhang, T.W. Odom, and M. Yan, Nano Lett. 21, 5430-5437 (2021). “Spontaneous Formation of Ordered Magnetic Domains by Patterning Stress,” DOI:10.1021/acs.nanolett.1c00070
195. P. Choo, T. Liu, and T.W. Odom, J. Am. Chem. Soc. 143, 4500-4555 (2021). “Nanoparticle Shape Determines Dynamics of Targeting Nanoconstructs on Cell Membranes” DOI: 10.1021/jacs.1c00850
194. J. Aizpurua, H. Atwater, J. Baumberg, S. Bozhevolnyi, M. Brongersma, H. Giessen, N. Halas, Y. Kivshar, M. Kling, F. Krausz, S. Maier, S. Makarov, M. Mikkelsen, M. Moskovits, P. Nordlander, T.W. Odom, A. Polman, C.W. Qiu, M. Segev, V. Shalaev, P. Törmä, D.P. Tsai, E. Verhagen, A. Zayats, X. Zhang, and N.I. Zheludev, ACS Photonics 8, 683 – 698 (2021). “Mark Stockman: Evangelist for Plasmonics,” DOI: 10.1021/acsphotonics.1c00299
193. J. Guan, M.R. Bourgeois, R.Li, J. Hu, R.D. Schaller, G.C. Schatz, and T.W. Odom, ACS Nano 15, 5567 – 5573 (2021). “Identification of Brillouin Zones by In-Plane Lasing from Light-Cone Surface Lattice Resonances” doi: 10.1021/acsnano.1c00449
192. E.E. Coughlin, J. Hu, A. Lee, and T.W. Odom, J. Am. Chem. Soc. 143, 3671 – 3676 (2021). “Light-Mediated Directed Placement of Different DNA Sequences on Single Gold Nanoparticles” doi: 10.1021/jacs.0c11699
191. R.K. Yadav, W. Liu, R. Li, T.W. Odom, G.S. Agarwal, and J.K. Basu, ACS Photonics 8, 576-584 (2021). “Room-Temperature Coupling of Single Photon Emitting Quantum Dots to Localized and Delocalized Modes in a Plasmonic Nanocavity Array” doi: 10.1021/acsphotonics.0c01635
190. S. Deng, B. Zhang, P. Choo, P.J.M. Smeets, and T.W. Odom, Nano Lett. 21, 1523-1529 (2021). “Plasmonic Photoelectrocatalysis in Copper–Platinum Core–Shell Nanoparticle Lattices” doi: 10.1021/acs.nanolett.0c05029
189. S.A. Díaz, P. Choo, E. Oh, K. Susumu, W.P. Klein, S.A. Walper, D.A. Hastman, T.W. Odom, and I.L. Medintz, ACS Catal. 11, 627-638 (2020). “Gold Nanoparticle Templating Increases the Catalytic Rate of an Amylase, Maltase, and Glucokinase Multienzyme Cascade through Substrate Channeling Independent of Surface Curvature” doi: 10.1021/acscatal.0c03602
188. D. Rhee, S. Deng, and T.W. Odom, Nanoscale 12, 23920–23928 (2020). “Soft Skin Layers for Reconfigurable and Programmable Nanowrinkles” doi: 10.1039/d0nr07054h
187. J. Hu, T. Liu, P. Choo, S. Wang, T. Reese, A. Sample, and T.W. Odom, ACS Cent. Sci. 6, 2339-2346 (2020). “Single-Nanoparticle Orientation Sensing by Deep Learning” doi: 10.1021/acscentsci.0c01252
186. S. Deng, R. Li, J.-E. Park, J. Guan, P. Choo, J. Hu, P.J.M. Smeets, and T.W. Odom, Proc. Natl. Acad. Sci. 117, 23380-23384 (2020). “Ultranarrow Plasmon Resonances from Annealed Nanoparticle Lattices” doi: 10.1073/pnas.2008818117
185. K. Lee, Z.N. Huang, C.A. Mirkin, and T.W. Odom, Nano Lett. 20, 6170-6175 (2020). “Endosomal Organization of CpG Constructs Correlates with Enhanced Immune Activation” doi: 10.1021/acs.nanolett.0c02536
184. C.J. Burrows, and et al., Nano Lett. 20, 4715-4717 (2020). “Confronting Racism in Chemistry Journals” doi: 10.1021/acs.nanolett.0c02496
183. L. Peng, H. Chan, P. Choo, T.W. Odom, S. Sankaranarayanan, and X. Ma, Nano Lett. 20, 5866-5872 (2020). “Creation of Single-Photon Emitters in WSe2 Monolayers Using Nanometer-Sized Gold Tips” doi:10.1021/acs.nanolett.0c01789
182. P.V. Kamat, N. Pradhan, K. Schanze, P.S. Weiss, J. Buriak, P. Stang, T.W. Odom, and G. Hartland, ACS Energy Lett. 5, 2253-2255 (2020). “Challenges and Opportunities in Designing Perovskite Nanocrystal Heterostructures” doi:10.1021/acsenergylett.0c01216
181. R.K. Yadav, M.R. Bourgeois, C. Cherqui, X.G. Juarez, W. Wang, T.W. Odom, G.C. Schatz, and J.K. Basu, ACS Nano. 14, 7347-7357 (2020). “Room Temperature Weak-to-Strong Coupling and The Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays” doi:10.1021/acsnano.0c02785
180. R.K. Yadav, M. Otten, W. Wang, C.L. Cortes, D.J. Gosztola, G.P. Wiederrecht, S.K. Gary, T.W. Odom, and J.K. Basu, Nano Lett. 20, 5043-5049 (2020). “Strongly Coupled Exciton—Surface Lattice Resonances Engineer Long-Rang Energy Propagation” doi: 10.1021/acsnanolett.0c01236
179. J. Pettine, P. Choo, F. Medeghini, T.W. Odom, and D.J. Nesbitt, Nat. Commun. 11, 1367 (2020). “Plasmonic nanostar photocathodes for optically-controlled directional currents” doi: 10.1038/s41467-020-15115-0
178. D. Wang, M.R. Bourgeois, J. Guan, A.K. Fumani, G.C. Schatz, and T.W. Odom, ACS Photonics 7, 630-636 (2020). “Lasing from Finite Plasmonic Nanoparticle Lattices” doi: 10.1021/acsphotonics.0c00231
177. B. Hu, C. Berkey, T.J. Feliciano, X. Chen, Z. Li, C. Chen, S. Amini, M.H. Nai, Q.‐L. Lei, R. Ni, J. Wang, W.R. Leow, S. Pan, Y.‐Q. Li, P. Cai, A. Miserez, S. Li, C.T. Lim, Y.‐L. Wu, T.W. Odom, R.H. Dauskardt, X. Chen, Adv. Mater. 32, 1907030 (2020). “Thermal‐Disrupting Interface Mitigates Intercellular Cohesion Loss for Accurate Topical Antibacterial Therapy” doi: 10.1002/adma.201907030
176. J. Guan, L.K. Sagar, R. Li, D. Wang, G. Bappi, W. Wang, N. Watkins, M.R. Bourgeois, L. Levina, F. Fan, S. Hoogland, O. Voznyy, J. Martins de Pina, R.D. Schaller, G.C. Schatz, E.H. Sargent, and T.W. Odom, ACS Nano 14, 3426-3433 (2020). “Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns” doi: 10.1021/acsnano.9b09466
175. J. Guan, L.K. Sagar, R. Li, D. Wang, G. Bappi, N.E. Watkins, M.R. Bourgeois, L. Levina, F. Fan, S. Hoogland, O.Voznyy, J.M. de Pina, R.D. Schaller, G.C. Schatz, E.H. Sargent, and T.W. Odom, Nano Lett. 20, 1468-1474 (2020). “Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices” doi: 10.1021/acs.nanolett.9b05342
174. Y-A.L. Lee, V. Pryamitsyn, D. Rhee, M. Olvera de la Cruz, and T.W. Odom, Nano Lett. 20, 1433-1439 (2020). “Strain-Dependent Nanowrinkle Confinement of Block Copolymers” doi: 10.1021/acs.nanolett.9b05189
173. D. Rhee, J.T. Paci, S. Deng, W-K. Lee, G.C. Schatz, and T.W. Odom, ACS Nano 14, 166-174 (2019). “Soft Skin Layers Enable Area-Specific, Multiscale Graphene Wrinkles with Switchable Orientations” doi: 10.1021/acsnano.9b06325
172. X. Ao, D. Wang, and T.W. Odom, ACS Photonics 6, 2612-2617 (2019). “Enhanced Fields in Mirror-backed Low-Index Dielectric Structures” doi: 10.1021/acsphotonics.9b00931
171. L. Jibril, P-C. Chen, J. Hu, T.W. Odom, and C.A. Mirkin, ACS Nano 13, 12408-12414 (2019). “Massively Parallel Nanoparticle Synthesis in Anisotropic Nanoreactors” doi: 10.1021/acsnano.9b05781
170. D. Wang, J. Guan, J. Hu, M. Bourgeois, and T.W. Odom, Acc. Chem. Res. 52, 2997-3007 (2019). “Manipulating Light–Matter Interactions in Plasmonic Nanoparticle Lattices” doi: 10.1021/acs.accounts.9b00345
169. A. Fernandez-Bravo, D. Wang, C. Tajon, A. Teitelboim, J. Guan, G.C. Schatz, B.E. Cohen, E. Chan, P.J. Schuck, and T.W. Odom, Nat. Mater. 18, 1172-1176 (2019). “Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons” doi: 10.1038/s41563-019-0482-5
168. Y. Lin, D. Wang, J. Hu, J. Liu, W. Wang, J. Guan, R.D. Schaller, and T.W. Odom, Adv. Funct. Mater. 29, 1904157 (2019). “Engineering Symmetry-Breaking Nanocrescent Arrays for Nanolasing” doi: 10.1002/adfm.201904157
167. R.M. Pallares, T. Stilson, P. Choo, J. Hu, and T.W. Odom, ACS App. Nano Mater. 2, 5266-5271 (2019). “Using Good’s Buffers To Control the Anisotropic Structure and Optical Properties of Spiky Gold Nanoparticles for Refractive Index Sensing” doi: 10.1021/acsanm.9b01117
166. R. Li, M.R. Bourgeois, C. Cherqui, J. Guan, D. Wang, J. Hu, R.D. Schaller, G.C. Schatz, and T.W. Odom, Nano Lett. 19, 6435-6441 (2019). “Hierarchical Hybridization in Plasmonic Honeycomb Lattices” doi: 10.1021/acs.nanolett.9b02661
165. D. Bhowmik, K.S.B. Culver, T. Liu, and T.W. Odom, ACS Nano 13, 13637-13644 (2019). “Resolving Single-Nanoconstruct Dynamics during Targeting and Nontargeting Live-Cell Membrane Interactions” doi: 10.1021/acsnano.9b03144
164. S. Deng, D. Rhee, W-K. Lee, S. Che, B. Keisham, V. Berry, and T.W. Odom, Nano Lett. 19, 5640-5646 (2019). “Graphene Wrinkles Enable Spatially Defined Chemistry” doi: 10.1021/acs.nanolett.9b02178
163. R. Li, D. Wang, J. Guan, W. Wang, X. Ao, G.C. Schatz, R. Schaller, and T.W. Odom, J. Opt. Soc. Am. B 36, E104-E111 (2019). “Plasmon nanolasing with aluminum nanoparticle arrays [Invited]” doi: 10.1364/josab.36.00e104
162. R.M. Pallares, P. Choo, L.E. Cole, C.A. Mirkin, A. Lee, and T.W. Odom, Bioconjugate Chem. 30, 2032-2037 (2019). “Manipulating Immune Activation of Macrophages by Tuning the Oligonucleotide Composition of Gold Nanoparticles” doi: 10.1021/acs.bioconjchem.9b00316
161. W-K. Lee and T.W. Odom, ACS Nano 13, 6170-6177 (2019). “Designing Hierarchical Nanostructures from Conformable and Deformable Thin Materials” doi: 10.1021/acsnano.9b03862
160. W. Wang, N. Watkins, A. Yang, R.D. Schaller, G.C. Schatz, and T.W. Odom, J. Phys. Chem. Lett. 10, 3301-3306 (2019). “Ultrafast Dynamics of Lattice Plasmon Lasers” doi: 10.1021/acs.jpclett.9b01076
159. M.J. Eller, K. Chandra, E.E. Coughlin, T.W. Odom, and E.A. Schweikert, Anal. Chem. 91, 5566-5572 (2019). “Label Free Particle-by-Particle Quantification of DNA Loading on Sorted Gold Nanostars” doi: 10.1021/acs.analchem.8b03715
158. M.P. Knudson, R. Li, D. Wang, W. Wang, R.D. Schaller, and T.W. Odom, ACS Nano 13, 7435-7441 (2019). “Polarization-Dependent Lasing Behavior from Low-Symmetry Nanocavity Arrays” doi: 10.1021/acsnano.9b01142
157. J. Hu, D. Wang, D. Bhowmik, T. Liu, S. Deng, M.P. Knudson, X. Ao, and T.W. Odom, ACS Nano 13, 4613-4620 (2019). “Lattice-Resonance Metalenses for Fully Reconfigurable Imaging” doi: 10.1021/acsnano.9b00651
156. J. Liu, W. Wang, D. Wang, J. Hu, W. Ding, R.D. Schaller, G.C. Schatz, and T.W. Odom, Proc. Natl. Acad. Sci. U.S.A. 116, 5925-5930 (2019). “Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays” doi: 10.1073/pnas.1818902116
155. Y. Hua, A.K. Fumani, and T.W. Odom, ACS Photonics 6, 322-326 (2019). “Tunable Lattice Plasmon Resonances in 1D Nanogratings” doi: 10.1021/acsphotonics.8b01541
154. D.C. Hooper, C. Kuppe, D. Wang, W. Wang, J. Guan, T.W. Odom, and V.K. Valev, Nano Lett. 19, 165-172 (2019). “Second Harmonic Spectroscopy of Surface Lattice Resonances” doi: 10.1021/acs.nanolett.8b03574
153. Y. Xue, W-K. Lee, J. Yuan, T.W. Odom, and Y. Huang, Langmuir 34, 15749-15753 (2018). “Mechanics Modeling of Hierarchical Wrinkle Structures from Sequential Release of Pre-strain” doi: 10.1021/acs.langmuir.8b03498
152. P. Choo, A.J. Hryn, K.S. Culver, D. Bhowmik, J. Hu, and T.W. Odom, J. Phys. Chem. C 122, 27024-27031 (2018). “Wavelength-Dependent Differential Interference Contrast Inversion of Anisotropic Gold Nanoparticles” doi: 10.1021/acs.jpcc.8b08995
151. W-K. Lee, W-B. Jung, D. Rhee, J. Hu, Y-A.L. Lee, C. Jacobson, H-T. Jung, and T.W. Odom, Adv. Mater. 30, 1706657 (2018). “Monolithic Polymer Nanoridges with Programmable Wetting Transitions” doi: 10.1002/adma.201706657
150. J. Yue, R.M. Pallares, L.E. Cole, E.E. Coughlin, C.A. Mirkin, A. Lee, and T.W. Odom, ACS Appl. Mater. Interfaces 10, 21920-21926 (2018). “Smaller CpG-Conjugated Gold Nanoconstructs Achieve Higher Targeting Specificity of Immune Activation” doi: 10.1021/acsami.8b06633
149. D. Wang, M.R. Bourgeois, W-K. Lee, R. Li, D. Trivedi, M.P. Knudson, W. Wang, G.C. Schatz, and T.W. Odom, Nano Lett. 18, 4549-4555 (2018). “Stretchable Nanolasing from Hybrid Quadrupole Plasmons” doi: 10.1021/acs.nanolett.8b01774
148. K.S.B. Culver, T. Liu, A.J. Hryn, N. Fang, and T.W. Odom, J. Phys. Chem. Lett. 9, 2886-2892 (2018). “In Situ Identification of Nanoparticle Structural Information Using Optical Microscopy” doi: 10.1021/acs.jpclett.8b01191
147. M.I. Stockman, K. Kneipp, S.I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V.M. Shalaev, A. Boltasseva, B. Gholipour, H.N.S. Krishnamoorthy, K.F. MacDonald, C. Soci, N.I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M.L. Solomon, D.R. Barton III, M. Lawrence, J.A. Dionne, S.V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T.W. Odom, N. Accanto, P.M. de Roque, I.M. Hancu, L. Piatkowski, N.F. van Hulst, and M.F. Kling, J. Opt. 20, 043001 (2018). “Roadmap on plasmonics” doi: 10.1088/2040-8986/aaa114
146. K. Chandra, B.K. Rugg, M.A. Ratner, M.R. Wasielewski, and T.W. Odom, J. Am. Chem. Soc. 140, 3219-3222 (2018). “Detecting and Visualizing Reaction Intermediates of Anisotropic Nanoparticle Growth” doi: 10.1021/jacs.8b00124
145. C. Deeb, Z. Guo, A. Yang, L. Huang, and T.W. Odom, Nano Lett. 18, 1454-1459 (2018). “Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays” doi: 10.1021/acs.nanolett.7b05223
144. W-B. Jung, K.M. Cho, W-K. Lee, T.W. Odom, and H-T. Jung, ACS Appl. Mater. Interfaces 10, 1347-1355 (2017). “Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces” doi: 10.1021/acsami.7b14011
143. D. Trivedi, D. Wang, T.W. Odom, and G.C. Schatz, Phys. Rev. A 96, 053825 (2017). “Model for describing plasmonic nanolasers using Maxwell-Liouville equations with finite-difference time-domain calculations” doi: 10.1103/PhysRevA.96.053825
142. W. Wang, M. Ramezani, A.I. Väkeväinen, P. Törmä, J.G. Rivas, and T.W. Odom, Mater. Today 21, 303-314 (2018). “The rich photonic world of plasmonic nanoparticle arrays” doi: 10.1016/j.mattod.2017.09.002
141. D. Wang, W. Wang, M.P. Knudson, G.C. Schatz, and T.W. Odom, Chem. Rev. 118, 2865-2881 (2017). “Structural Engineering in Plasmon Nanolasers” doi: 10.1021/acs.chemrev.7b00424
140. T.B. Hoang, G.M. Akselrod, A. Yang, T.W. Odom, and M.H. Mikkelsen, Nano Lett. 17, 6690-6695 (2017). “Millimeter-scale spatial coherence from a plasmon laser” doi: 10.1021/acs.nanolett.7b02677
139. M.P. Knudson, A.J. Hryn, M.D. Huntington, and T.W. Odom, ACS Appl. Mater. Interfaces 9, 33554-33558 (2017). “Sequential Feature-Density Doubling for Ultraviolet Plasmonics” doi: 10.1021/acsami.7b10842
138. K. Chandra, V. Kumar, S.E. Werner, and T.W. Odom, ACS Omega 2, 4878-4884 (2017). “Separation of Stabilized MOPS Gold Nanostars by Density Gradient Centrifugation” doi: 10.1021/acsomega.7b00871
137. W-K. Lee, S. Yu, C.J. Engel, T. Reese, D. Rhee, W. Chen, and T.W. Odom, Proc. Natl. Acad. Sci. U.S.A. 114, 8734-8739 (2017). “Concurrent design of quasi-random photonic nanostructures” doi: 10.1073/pnas.1704711114
136. A. Paul, M. Stührenberg, S. Chen, D. Rhee, W-K. Lee, T.W. Odom, S. Heilshorn, and A. Enejder, Soft Matter 13, 5665-5675 (2017). “Micro- and nano-patterned elastin-like polypeptide hydrogels for stem cell culture” doi: 10.1039/C7SM00487G
135. D. Wang, A. Yang, W. Wang, Y. Hua, R.D. Schaller, G.C. Schatz, and T.W. Odom, Nat. Nanotechnol. 12, 889-894 (2017). “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices” doi: 10.1038/nnano.2017.126
134. J. Yue, T.J. Feliciano, W. Li, A. Lee, and T. W. Odom, Bioconjugate Chem. 28, 1791-1800 (2017). “Gold Nanoparticle Size and Shape Effects on Cellular Uptake and Intracellular Distribution of siRNA Nanoconstructs” doi: 10.1021/acs.bioconjchem.7b00252
133. S. Yu, Y. Zhang, C. Wang, W-K. Lee, B. Dong, T.W. Odom, C. Sun, and W. Chen, J. Mech. Des. 139, 071401 (2017). “Characterization and Design of Functional Quasi-Random Nanostructured Materials Using Spectral Density Function” doi: 10.1115/1.4036582
132. D. Rhee, W-K. Lee, and T.W. Odom, Angew. Chemie 56, 6523-6527 (2017). “Crack-Free, Soft Wrinkles Enable Switchable Anisotropic Wetting” doi: 10.1002/anie.201701968
131. A. Yang, D. Wang, W. Wang, and T. W. Odom, Annu. Rev. Phys. Chem. 68, 83-99 (2017). “Coherent Light Sources at the Nanoscale” doi: 10.1146/annurev-physchem-052516-050730
130. T. T. Tran, D. Wang, Z-Q. Xu, A. Yang, M. Toth, T.W. Odom, and I. Aharonovich, Nano Lett. 17, 2634-2639 (2017). “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays” doi: 10.1021/acs.nanolett.7b00444
129. J.T. Paci, C.T. Chapman, W-K. Lee, T. W. Odom, and G.C. Schatz, ACS Applied Materials & Interfaces 9, 9079-9088 (2017). “Wrinkles in Polytetrafluoroethylene on Polystyrene: Persistence Lengths and the Effect of Nanoinclusions” doi: 10.1021/acsami.6b14789
128. J. Hu, X. Ren, A.N. Reed, T. Reese, D. Rhee, B. Howe, L.J. Lauhon, A.M. Urbas, and T.W. Odom, ACS Photonics 4, 606-612 (2017). “Evolutionary Design and Prototyping of Single Crystalline Titanium Nitride Lattice Optics” doi: 10.1021/acsphotonics.6b00955
127. A. Yang, A.J. Hryn, M.R. Bourgeois, W-K. Lee, J. Hu, G.C. Schatz, and T.W. Odom, Proc. Natl. Acad. Sci. USA 113, 14201-14206 (2016). “Programmable and reversible plasmon mode engineering” doi: 10.1073/pnas.1615281113
126. J. Hu, C-H. Liu, X. Ren, L.J. Lauhon, and T.W. Odom, ACS Nano 10, 10275-10282 (2016). “Plasmonic Lattice Lenses for Multiwavelength Achromatic Focusing” doi: 10.1021/acsnano.6b05855
125. W-K. Lee, J. Kang, K-S. Chen, C.J. Engel, W-B. Jung, D. Rhee, M.C. Hersam, and T.W. Odom, Nano Lett. 16, 7121-7127 (2016). “Multiscale, Hierarchical Patterning of Graphene by Conformal Wrinkling” doi: 10.1021/acs.nanolett.6b03415
124. K.S.B. Culver, Y.J. Shin, M.W. Rotz, T.J. Meade, M.C. Hersam, and T.W. Odom, J. Phys. Chem. C 120, 22103-22109 (2016). “Shape-Dependent Relaxivity of Nanoparticle-Based T1 Magnetic Resonance Imaging Contrast Agents” doi: 10.1021/acs.jpcc.6b08362
123. K. Chandra, K.S.B. Culver, S.E. Werner, R.C. Lee, and T.W. Odom, Chemistry of Materials 28, 6763-6769 (2016). “Manipulating the Anisotropic Structure of Gold Nanostars using Good’s Buffer” doi: 10.1021/acs.chemmater.6b03242
122. C.T. Chapman, J.T. Paci, W-K. Lee, C.J. Engel, T.W. Odom, and G.C. Schatz, ACS Appl. Mater. Interfaces 8, 24339-24344 (2016). “Interfacial Effects on Nanoscale Wrinkling in Gold-Covered Polystyrene” doi: 10.1021/acsami.6b08554
121. W-K. Lee, W. Jung, S. Nagel, and T.W. Odom, Nano Lett. 16, 3774-3779 (2016). “Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles” doi: 10.1021/acs.nanolett.6b01169
120. D. Wang, A. Yang, A.J. Hryn, G.C. Schatz, and T.W. Odom, ACS Photonics 2, 1789–1794 (2015). “Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays” doi: 10.1021/acsphotonics.5b00546
119. Y. Hua, K. Chandra, D.H.M. Dam, G.P. Wiederrecht, and T.W. Odom, J. Phys. Chem. Lett., 6, 4904–4908 (2015). “Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles” doi: 10.1021/acs.jpclett.5b02263
118. A. Yang, Z. Li, M.P. Knudson, A.J. Hryn, W. Wang, K. Aydin, and T.W. Odom, ACS Nano 9, 11582-11588 (2015). “Unidirectional Lasing from Template-stripped Two-dimensional Plasmonic Crystals” doi: 10.1021/acsnano.5b05419
117. H. Lee, D.H.M. Dam, J.W. Ha, J. Yue, and T.W. Odom, ACS Nano 9, 9859–9867 (2015). “Enhanced Human Epidermal Growth Factor Receptor 2 Degradation in Breast Cancer Cells by Lysosome-Targeting Gold Nanoconstructs” doi: 10.1021/acsnano.5b05138
116. W-K. Lee, C.J. Engel, M.D. Huntington, J. Hu, and T.W. Odom, Nano Letters 15, 5624–5629 (2015). “Controlled Three-Dimensional Hierarchical Structuring by Memory-Based, Sequential Wrinkling” doi: 10.1021/acs.nanolett.5b02394
115. T.W. Odom, R.M. Dickson, M.A. Duncan, and W. Tan, ACS Photonics 2, 787–789 (2015). “Shining a Light on the Molecular and Nanoscopic Worlds” doi: 10.1021/acsphotonics.5b00337
114. A. Yang and T.W. Odom, IEEE Photonics Journal 7, 1–6 (2015). “Breakthroughs in Photonics 2014: Advances in Plasmonic Nanolasers” doi: 10.1109/jphot.2015.2413773
113. A. Yang, T.B. Hoang, M. Dridi, C. Deeb, M.H. Mikkelsen, G.C. Schatz, and T.W. Odom, Nat. Commun. 6, 1–7 (2015). “Real-time tunable lasing from plasmonic nanocavity arrays” doi: 10.1038/ncomms7939
112. M.W. Rotz, K.S.B. Culver, G. Parigi, K.W. MacRenaris, C. Luchinat, T.W. Odom, and T. J. Meade, ACS Nano 9, 3385–3396 (2015). “High Relaxivity Gd(III)-DNA Gold Nanostars: Investigation of Shape Effects on Proton Relaxation” doi: 10.1021/nn5070953
111. D.H.M. Dam, H. Lee, R.C. Lee, K.H. Kim, N.L. Kelleher, and T.W. Odom, Bioconjugate Chem. 26, 279–285 (2015). “Tunable Loading of Oligonucleotides with Secondary Structure on Gold Nanoparticles through a pH-driven Method” doi: 10.1021/bc500562s
110. H. Lee and T.W. Odom, Nanomedicine 10, 177-180 (2015) “Controlling Ligand Density on Nanoparticles as a Means to Enhance Biological Activity” doi: 10.2217/nnm.14.204
109. D.H.M. Dam, K.S.B. Culver, I. Kandela, R.C. Lee, K. Chandra, H. Lee, C. Mantis, A. Ugolkov, A.P. Mazar, and T.W. Odom, Nanomedicine 11, 671-679 (2015). “Biodistribution and in Vivo Toxicity of Aptamer-Loaded Gold Nanostars” doi: 10.1016/j.nano.2014.10.005
108. M.D. Huntington, L.J. Lauhon, and T.W. Odom, Nano Letters 14, 7195-7200 (2014). “Subwavelength Lattice Optics by Evolutionary Design” doi: 10.1021/nl5040573
107. I. Hod, W. Bury, D.M. Karlin, P. Deria, C. Kung, M.J. Katz, M. So, B. Klahr, D. Jin, Y. Chung, T.W. Odom, O.K. Farha, and J.T. Hupp, Adv. Mater. 26, 6295-6300 (2014). “Directed Growth of Electroactive Metal Organic Framework Thin Films Using Electrophoretic Deposition” doi: 10.1002/adma.201401940
106. M.D. Huntington, C.J. Engel, and T.W. Odom, Angew. Chemie. 126, 8255–8259 (2014). “Controlling the Orientation of Nanowrinkles and Nanofolds by Patterning Strain”
doi: 10.1002/anie.201404483
105. A. Yang, M.D. Huntington, M.F. Cardinal, S.S. Masango, R.P. Van Duyne, and T.W. Odom, ACS Nano 8, 7639–7647 (2014).”Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing”
doi: 10.1021/nn502502r
104. D.H.M. Dam, R.C. Lee, and T.W. Odom, Nano Letters 14, 2843–2848 (2014). “Improved in Vitro Efficacy of Gold Nanoconstructs by Increased Loading of G-quadruplex Aptamer”
doi: 10.1021/nl500844m
103. S. Li, P. Guo, D.B. Buchholz, W. Zhou, Y. Hua, T.W. Odom, J.B. Ketterson, L.E. Ocola, K. Sakoda, and R.P.H. Chang, ACS Photonics 1, 163–172 (2014). “Plasmonic–Photonic Mode Coupling in Indium-Tin-Oxide Nanorod Arrays”
doi: 10.1021/ph400038g
102. D.H.M. Dam, K.S.B. Culver, and T.W. Odom, Mol. Pharmaceutics. 11, 580–587 (2014). “Grafting Aptamers onto Gold Nanostars Increases in Vitro Efficacy in a Wide Range of Cancer Cell Types”
doi: 10.1021/mp4005657
101. S.M. Lubin, A.J. Hryn, M.D. Huntington, C.J. Engel, and T.W. Odom, ACS Nano. 7, 11035–11042 (2013). “Quasiperiodic Moiré Plasmonic Crystals”
doi: 10.1021/nn404703z
100. J.Y. Suh and T.W. Odom, Nano Today 8, 469–479 (2013). “Nonlinear Properties of Nanoscale Antennas”
doi: 10.1016/j.nantod.2013.08.010
99. W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, and T.W. Odom, Nat. Nanotechnol. 8, 506–511 (2013). “Lasing action in strongly coupled plasmonic nanocavity arrays”
doi: 10.1038/nnano.2013.99
98. M.D. Huntington, C.J. Engel, A.J. Hryn, and T.W. Odom, ACS Appl. Mater. Interfaces 5, 6438–6442 (2013). “Polymer Nanowrinkles with Continuously Tunable Wavelengths”
doi: 10.1021/am402166d
97. T.W. Odom, Nature 496, 40–41 (2013). “Materials science: The same, but better”
doi: 10.1038/496040a
96. J.Y. Lin, A.D. Stuparu, M.D. Huntington, M. Mrksich, and T.W. Odom, J. Phys. Chem. C 117, 5286-5292 (2013). “Nanopatterned Substrates Increase Surface Sensitivity for Real-Time Biosensing”
doi: 10.1021/jp401598a
95. D.H.M. Dam, K.S.B. Culver, P.N. Sisco, and T.W. Odom, Therapeutic Delivery 11, 1263-1267 (2012). “Shining Light on Nuclear-Targeted Therapy using Gold Nanostar Constructs”
doi: 10.4155/tde.12.107
94. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, Nano Letters 12, 5769–5774 (2012). “Plasmonic Bowtie Nanolaser Arrays”
doi: 10.1021/nl303086r
93. M.G. Blaber, C.J. Engel, S.R.C. Vivekchand, S.M. Lubin, T.W. Odom, and G.C. Schatz, Nano Letters 12, 5275–5280 (2012). “Eutectic Liquid Alloys for Plasmonics: Theory and Experiment”
doi: 10.1021/nl3025104
92. W. Zhou, J.Y. Suh, Y. Hua, and T.W. Odom, J. Phys. Chem. C 117, 2541–2546 (2012). “Hybridization of Localized and Guided Modes in 2D Metal-Insulator-Metal Nanocavity Arrays”
doi: 10.1021/jp306972j
91. T.W. Odom, E. You, and C.M. Sweeney, J. Phys. Chem. Lett. 3, 2611-2616 (2012). “Multi-scale Plasmonic Nanoparticles and the Inverse Problem” doi: 10.1021/jz300886z
90. S.M. Lubin, W. Zhou, A.J. Hryn, M.D. Huntington, and T.W. Odom, Nano Letters 12, 4948–4952 (2012). “High-Rotational Symmetry Lattices Fabricated by Moiré Nanolithography”
doi: 10.1021/nl302535p
89. T.W. Odom, Nat. Nanotechnol. 7, 550-551 (2012). “Colours at the Nanoscale: Printable Stained Glass”
doi: 10.1038/nnano.2012.135
88. S.R.C. Vivekchand, C.J. Engel, S.M. Lubin, M.G. Blaber, W. Zhou, J.Y. Suh, G.C. Schatz, and T.W. Odom, Nano Letters 12, 4324-4328 (2012). “Liquid Plasmonics: Manipulating Surface Plasmon Polaritons via Phase Transitions”
doi: 10.1021/nl302053g
87. Y. Hua, W. Zhou, J.Y. Suh, M.D. Huntington, and T.W. Odom, Opt. Express 20, 14284-14291 (2012). “The Talbot Effect Beyond the Paraxial Limit at Optical Frequencies”
doi: 10.11364/OE.20.014284
86. W. Zhou, Y. Hua, M.D. Huntington, and T.W. Odom, J. Phys. Chem. Lett. 3, 1229-1421 (2012). “Delocalized Lattice Plasmon Resonances Show Dispersive Quality Factors.”
doi: 10.1021/jz300318v
85. D.H.M. Dam, J. Lee, P. Sisco, D. Co, M. Zhang, M.R. Wasielewski, and T.W. Odom, ACS Nano 6, 3318-3326 (2012). “Direct Observation of Nanoparticle-Cancer Cell Nucleus Interactions.”
doi: 10.1021/nn300296p
84. T.W. Odom and M.D. Huntington, SPIE Newsroom (2012). “Benchtop Photolithography Tool offers a Low-cost Route to Nanomanufacturing.”
doi: 10.1117/2.1201202.004132
83. G. Kichin, T. Weiss, H. Gao, J. Henzie, T.W. Odom, S.G. Tikhodeev, and H. Giessen, Physica B: Condensed Matter 407, 4037-4042 (2012). “Metal-dielectric Photonic Crystal Superlattice: 1D and 2D Models and Empty Lattice Approximation.”
doi:10.1016/j.physb.2012.01.128
82. E. You, W. Zhou, J.Y. Suh, M.D. Huntington, and T.W. Odom, ACS Nano 6, 1786-1794 (2012). “Polarization-Dependent Multipolar Plasmon Resonances in Anisotropic Multiscale Au Particles.”
doi: 10.1021/nn204845z
81. J.Y. Suh, M.D. Huntington, C.-H. Kim, W. Zhou, M.R. Wasielewski and T.W. Odom, Nano Letters 12, 3318-3326 (2012). “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas.”
10.1021/nl2034915
80. S.Q. Li, P. Guo, L. Zhang, W. Zhou, T.W. Odom, T. Seideman, J.B. Ketterson, and R.P.H. Chang, ACS Nano 5, 9161-9170 (2011). “Infrared Plasmonics with Indium-Tin-Oxide Nanorod Arrays.”
doi: 10.1021/nn203406f
79. M.D. Huntington and T.W. Odom, Small 7, 3144-3147 (2011). “A Portable, Benchtop Photolithography System Based on a Solid-State Light Source.”
doi:10.1002/smll.201101209
78. C.M. Sweeney, C.L. Nehl, W. Hasan, T. Liang, A.L. Eckermann, T.J. Meade, and T.W. Odom, J Phys. Chem. C 115, 15933-15937 (2011). “Three-Channel Spectrometer for Wide-Field Imaging of Anisostropic Plasmonic Nanoparticles.”
doi:10.1021/jp206157v
77. T.W. Odom and G.C. Schatz, Chem. Rev. 7, 3667-3668 (2011). “Introduction to Plasmonics.”
doi:10.1021/cr2001349
76. C.M. Sweeney, C.L. Stender, C.L. Nehl, W. Hasan, K.L. Shuford, and T.W. Odom, Small 7, 2032-2036 (2011). “Optical Properties of Tipless Gold Nanopyramids.”
doi:10.1002/smll.201100758
75. W. Zhou and T.W. Odom, Nat. Nanotechnol. 6, 423-427 (2011). “Tunable Subradiant Lattice Plasmons by Out-of-Plane Dipolar Interactions.”
doi:10.1038/nnano.2011.72
74. K.A. Stoerzinger, J.Y. Lin, and T.W. Odom, Chem. Sci. 2, 1435-1439 (2011). “Nanoparticle SERS Substrates with 3D Raman-Active Volumes.”
doi: 10.1039/C1SC00125F
73. M. Chia, C.M. Sweeney, and T.W. Odom, J. Chem. Educ. 88, 461-464 (2011). “Chemistry in Microfluidic Channels.”
doi: 10.1021/ed1008624
72. H. Gao, J.K. Hyun, M.H. Lee, J.-C. Yang, L.J. Lauhon, and T.W. Odom, Nano Lett. 10, 4111-4116 (2010). “Broadband Plasmonic Microlenses Based on Patches of Nanoholes.”
doi: 10.1021/nl1022892
71. M.H. Lee, M.D. Huntington, W. Zhou, J.-C. Yang, and T.W. Odom, Nano Lett. 11, 311-315 (2011). “Programmable Soft Lithography: Solvent-assisted Nanoscale Embossing.”
doi: 10.1021/nl102206x
70. J.-C. Yang, H. Gao, J.Y. Suh, W. Zhou, M.H. Lee, and T.W. Odom, Nano Lett. 10, 3173-3178 (2010). “Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays.”
doi: 10.1021/nl102078j
69. H. Gao, J.-C. Yang, J.Y. Lin, A. Stuparu, M.H. Lee, M. Mrksich, and T.W. Odom, Nano Lett. 10, 2549-2554 (2010). “Using the Angle-Dependent Resonances of Molded Plasmonic Crystals to Improve the Sensitivities of Biosensors.”
doi: 10.1021/nl101165r
68. M. Lee, J.Y. Lin, and T.W. Odom, Angew. Chemie. 49, 3057-3060 (2010). “Large-area Nanocontact Printing using Metallic Nanostencil Masks.”
doi: 10.1002/anie.200906800
67. P. Li, C.L. Stender, E. Ringe, L.D. Marks, and T.W. Odom, Small 6, 1096-1099 (2010). “Synthesis of TaS2 Nanotubes from Ta2O5 Nanotube Templates.”
doi: 10.1002/smll.201000226
66. K. A. Stoerzinger, W. Hasan, J. Y. Lin, A. Robles, and T.W. Odom, J. Phys. Chem. Lett. 1, 1046-1050 (2010). “Screening Nanopyramid Assemblies to Optimize Surface Enhanced Raman Scattering.”
doi: 10.1021/jz100095b
65. W. Zhou, H. Gao, and T.W. Odom, ACS Nano 4, 1241-1247 (2010). “Toward Broadband Plasmonics: Tuning Dispersion in Rhombic Plasmonic Crystals.”
doi: 10.1021/nn901590p
64. J. Lin, W. Hasan, J.C. Yang, and T.W. Odom, J. Phys. Chem. C 114, 7432-7435 (2010). “Optical Properties of Nested Pyramidal Nanoshells.”
doi: 10.1021/jp910627r
63. T.W. Odom, MRS Bulletin 35, 66-73 (2010). “Materials Screening and Applications of Plasmonic Crystals.”
doi: 10.1557/mrs2010.618
62. H. Gao, W. Zhou, and T.W. Odom, Adv. Func. Mater. 20, 523 (2010). “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library.”
doi: 10.1002/adfm.200901623
61. T.W. Odom, H. Gao, J.M. McMahon, J. Henzie, and G.C. Schatz, Chem. Phys. Lett. 483, 187-192 (2009). “Plasmonic Superlattices: Hierarchical Subwavelength Hole Arrays.”
doi: 10.1016/j.cplett.2009.10.084
60. E. You, R. Ahn, M.H. Lee, M.R. Raja, T.V. O’Halloran, and T.W. Odom, JACS 131, 10863-10865 (2009). “Size Control of Arsenic Trioxide Nanocrystals Grown in Nanowells.”
doi: 10.1021/ja902117b
59. J.E. Barton, C.L. Stender, P. Li, and T.W. Odom, J. Mater. Chem. 19, 4896-4898 (2009). “Structural Control of Anodized Tantalum Oxide Nanotubes.”
doi: 10.1039/b904964a
58. M.H. Lee, H. Gao, and T.W. Odom, Nano Lett. 9, 2584-2588 (2009). “Refractive Index Sensing Using Quasi One-Dimensional Nanoslit Arrays.”
doi: 10.1021/nl900773m
57. W. Hasan, C.L. Stender, M.H. Lee, C.L. Nehl, J. Lee, and T.W. Odom, Nano Lett. 9, 1555-1558 (2009). “Tailoring the Structure of Nanopyramids for Optical Heat Generation.”
doi: 10.1021/nl803647n
56. Y. Babayan, J.M. McMahon, S. Li, S.K. Gray, G.C. Schatz, and T.W. Odom, ACS Nano 3, 615-620 (2009). “Confining Standing Waves in Optical Corrals.”
doi: 10.1021/nn8008596
55. H. Gao, J.M. McMahon, M.H. Lee, J. Henzie, S.K. Gray, G.C. Schatz, and T.W. Odom, Opt. Express 17, 2334-2340 (2009). “Rayleigh Anomaly-Surface Plasmon Polariton Resonances in Palladium and Gold Subwavelength Hole Arrays.”
PDF Reprint
54. C. M. Sweeney, W. Hasan, C.L. Nehl, and T.W. Odom, J. Phys. Chem. A 113, 4265-4268 (2009). “Optical Properties of Anisotropic Core-Shell Pyramidal Particles.”
doi: 10.1021/jp810837u
53. J. Lee, W. Hasan, and T.W. Odom, J. Phys. Chem. C 113, 2205-2207 (2009). “Tuning the Thickness and Orientation of Single Au Pyramids for Improved Refractive Index Sensitivities.”
doi: 10.1021/jp8111155
52. T.W. Odom and M.-P. Pileni, Acc. Chem. Res. 41, 1565 (2008). “Guest Editorial: Nanoscience.”
doi: 10.1021/ar800253n
51. H. Gao, J. Henzie, M.H. Lee, and T.W. Odom, Proc. Natl. Acad. Sci. 105, 20146-20151 (2008). “Screening Plasmonic Materials using Pyramidal Gratings.”
doi: 10.1073/pnas.0809034105
50. J. Henzie, J. Lee, M.H. Lee, W. Hasan, and T.W. Odom, Ann. Rev. of Phys. Chem. 60, 147-165 (2009). “Nanofabrication of Plasmonic Structures.”
doi: 10.1146/annurev.physchem.040808.090352
49. J. Lee, W. Hasan, C.L. Stender, and T.W. Odom, Acc. Chem. Res. 41, 1762-1771 (2008). “Pyramids: A Platform for Designing
Multifunctional Plasmonic Particles.”
doi: 10.1021/ar800126p
48. C.L. Stender, P. Sekar, and T.W. Odom, J. Solid State Chem. 181, 1621-1627 (2008). “Solid State Chemistry on a Surface and in a Beaker: Unconventional Routes to Transition Metal Chalcogenide Nanomaterials.”
doi: 10.1016/j.jssc.2008.06.004
47. T.W. Odom and C.L. Nehl, ACS Nano 2, 612-616 (2008). “How Gold Nanoparticles have Stayed in the Light: the 3Ms Principle.”
doi: 10.1021/nn800178z
46. K.L. Shuford, J. Lee, T.W. Odom, and G.C. Schatz, J. Phys. Chem. C 112, 6662-6666 (2008). “Optical Properties of Gold Pyramidal Shells.”
doi: 10.1021/jp8004844
45. L. Wang, M. H. Lee, J. Barton, L. Hughes, and T.W. Odom, JACS 130, 2142-2143 (2008). “Shape-Control of Protein Crystals in Patterned Microwells.”
doi: 10.1021/ja077956v
44. J. McMahon, J. Henzie, T.W. Odom, G.C. Schatz, and S.K. Gray, Opt. Exp. 15, 18119-18129 (2007). “Tailoring the Sensing Capabilities of Nanohole Arrays in Gold Films with Rayleigh Anomaly-Surface Plasmon Polaritons.”
PDF Reprint
43. J. Lee, W. Hasan, M.H. Lee, and T.W. Odom, Adv. Mater. 19, 4387-4391 (2007). “Optical Properties and Magnetic Manipulation of Bi-Material Nanopyramids.”
doi: 10.1002/adma.200701505
42. M.H. Lee, H. Gao, J. Henzie, and T.W. Odom, Small 3, 2029-2033 (2007). “Microscale Arrays of Nanoscale Holes.”
doi: 0.1002/smll.200700499
41. W. Hasan, J. Lee, J. Henzie, and T.W. Odom, J. of Phys. Chem. C 111, 17176-17179 (2007). doi: 10.1021/jp709607s. “Selective Functionalization and Spectral Identification of Gold Nanopyramids.”
PDF Reprint
40. J. Henzie, M.H. Lee, and T.W. Odom, Nat. Nanotechnol. 2, 549-554 (2007). “Multiscale Patterning of Plasmonic Metamaterials.”
PDF Reprint
39. V. Meenakshi, Y. Babayan, and T.W. Odom, J. Chem. Ed. 84, 1795-1798 (2007). “Benchtop Nanoscale Patterning using Soft Lithography.”
PDF Reprint
38. C.L. Stender and T.W. Odom, J. Mater. Chem. 17, 1866-1869 (2007). “Chemical Nanofabrication: A General Route to Surface-Patterned and Free-standing Transition Metal Chalcogenide Nanostructures.”
PDF Reprint
37. S.P. Price, J. Henzie, and T.W. Odom, Small 3, 372-374 (2007). “Addressable, Large-area Nanoscale Organic Light Emitting Diodes.”
PDF Reprint
36. Y. Gu, J.P. Romankiewicz, J.K. David, J.L. Lensch, E.S. Kwak, T.W. Odom, and L.J. Lauhon, J. Vac. Sci. Technol. B 24, 2172-2177 (2006). “Local Photocurrent Mapping as a Probe of Contact Effects and Charge Carrier Transport in Semiconductor Nanowire Devices.”
PDF Reprint
35. H. Gao, J. Henzie, and T.W. Odom, Nano Letters 6, 2104-2107 (2006). “Direct Evidence for Surface Plasmon-Mediated Enhanced Light Transmission through Metallic Nanohole Arrays.”
PDF Reprint
34. J. Henzie, K.L. Shuford, E.-S. Kwak, G.C. Schatz, and T.W. Odom, J. Phys. Chem. B 110, 14028-14031 (2006). “Manipulating the Optical Properties of Pyramidal Nanoparticle Arrays.”
PDF Reprint
33. J. Henzie, J.E. Barton, C.L. Stender, and T.W. Odom, Accts. Chem. Res. 39, 249-257 (2006). “Large-Area Nanoscale Patterning: Chemistry meets Fabrication.”
PDF Reprint
32. E.C. Greyson, J.E. Barton, and T.W. Odom, Small 2, 368-371 (2006). “Tetrahedral Zinc Blende SnS Nano- and Microcrystals.”
PDF Reprint
31. C.L. Stender, E. C. Greyson, Y. Babayan, and T.W. Odom, Adv. Mat. 17, 2837-2841 (2005). “Patterned MoS2-Nanostructures over cm2 -Areas.”
PDF Reprint
30. E.-S. Kwak, J. Henzie, S.-T. Chang, S.T. Gray, G.C. Schatz, and T.W. Odom, Nano Letters 5, 1963-1967 (2005). “Surface Plasmon Standing Waves in Large-Area Subwavelength Hole Arrays.”
PDF Reprint
29. T.W. Odom, J. Henzie, Y. Babayan, E. C. Greyson, and E.-S. Kwak, Talanta 67, 507-513 (2005). “Optical Properties of Surface-Patterned Nanostructures.”
PDF Reprint
28. Y. Gu, E.-S. Kwak, J. L. Lensch, J. E. Allen, T. W. Odom, and L. J. Lauhon, Appl. Phys. Lett. 87, 43111-3 (2005). “Near-field Scanning Photocurrent Microscopy of a Nanowire Photodetector.” Cover article.
PDF Reprint
27. J. Henzie, E.-S. Kwak, and T.W. Odom, Nano Letters 5, 1199-1202 (2005). “Mesoscale Metallic Pyramids with Nanoscale Tips.”
PDF Reprint
26. T.W. Odom, Small 1, 462 (2005). “The Nano-Micro Interface: Bridging Micro and Nano Worlds. Edited by Hans-Jörg Fecht and Matthias Werner.”
PDF Reprint
25. P. Sekar, E.C. Greyson, J.E. Barton, and T.W. Odom, JACS 127, 2054-2055 (2005). “Synthesis of Nanoscale NbSe2 Materials from Molecular Precursors.
PDF Reprint
24. N. Damean, B. A. Parviz, J.N. Lee, T.W. Odom, and G. M. Whitesides, J. of Micromechanics and Microengineering, 15, 29-34 (2005). “Composite Ferromagnetic Photoresist for the Fabrication of MicroElectroMechanical Systems.”
PDF Reprint
23. E.C. Greyson, Y. Babayan, and T.W. Odom, Adv. Mat. 16, 1348-1352 (2004). “Directed Growth of Ordered Arrays of Small Diameter ZnO Nanowires.”
PDF Reprint
22. Y. Babayan, J.E. Barton, E.C. Greyson, and T.W. Odom, Adv. Mat. 16, 1341-1345 (2004). “Templated and Hierarchical Assembly of CdSe/ZnS Quantum Dots.”
PDF Reprint
21. J.E. Barton and T.W. Odom, Nano Letters 4, 1525-1528 (2004). “Mass-limited Growth in Zeptoliter-Beakers: A General Approach to Nanoparticle Synthesis.”
PDF Reprint
20. H. Wu, T.W. Odom, D.T. Chiu and G.M. Whitesides, JACS 125, 554-559 (2003). “Fabrication of Complex Three-Dimensional Microchannels in PDMS.”
PDF Reprint
19. T.W. Odom, V.R. Thalladi, J.C. Love and G.M. Whitesides, JACS 124, 12112-12113 (2002). “Generation of 30-50 nm Structures using Easily Fabricated, Composite PDMS Masks.”
PDF Reprint
18. H. Wu, T.W. Odom, and G.M. Whitesides, Adv. Mat. 14, 1213-1216 (2002). “Generation of Chrome Masks with Micrometer Features using Microlens Lithography.”
PDF Reprint
17. H. Wu, T.W. Odom, and G.M. Whitesides, Anal. Chem. 74, 3267-3273 (2002). “Reduction Photolithography using Microlens Arrays: Applications in Grayscale Photolithography.”
PDF Reprint
16. H. Wu, T.W. Odom, and G.M. Whitesides, JACS 124, 7288-7289 (2002). “Connectivity of Features in Microlens Array Reduction Photolithography: Generation of Various Patterns with a Single Photomask.”
PDF Reprint
15. T.W. Odom, J.C. Love, D.B. Wolfe, K.E. Paul and G.M. Whitesides, Langmuir 18, 5314-5320 (2002). “Improved Pattern Transfer in Soft Lithography Using Composite Stamps.”
PDF Reprint
14. T.W. Odom, J.L. Huang and C.M. Lieber Ann. NY Acad. Sci. 960, 203-215 (2002). “Single-walled Carbon Nanotubes–from Fundamental Studies to New Device Concepts.”
PDF Reprint
13. T.W. Odom. Aust. J. of Chem. 54, 601-604 (2002). “Electronic Properties of Single-walled Carbon Nanotubes.”
PDF Reprint
12. T.W. Odom, J.L. Huang and C.M. Lieber, J. Phys.: Cond. Matter 14, 145-167 (2002). Topical Review: “STM Studies of Single-walled Carbon Nanotubes.”
PDF Reprint
11. T.W. Odom, J.H. Hafner and C.M. Lieber, Applied Physics 80, 173-211 (2001). “Scanning Probe Microscopy Studies of Carbon Nanotubes.”
PDF Reprint
10. T.W. Odom, J.L. Huang and C.M. Lieber, Science 290, 1549-1552 (2000). “Magnetic Clusters on Single-Walled Carbon Nanotubes: The Kondo Effect in a One-Dimensional Host.”
PDF Reprint
9. P. Kim, T.W. Odom, J.L. Huang and C.M. Lieber, Carbon 38, 1741-1744 (2000). “STM Study of Single-Walled Carbon Nanotubes.”
PDF Reprint
8. C.L. Cheung, J.H. Hafner, T.W. Odom, K. Kim and C.M. Lieber, Appl. Phys. Lett. 76, 3136-3138 (2000). “Growth and Fabrication with Single-walled Carbon Nanotube Probes.”
PDF Reprint
7. T.W. Odom, J.L. Huang, P. Kim and C.M. Lieber, J. Phys. Chem. B 104, 2794-2809 (2000). “Structure and Electronic Properties of Carbon Nanotubes.”
PDF Reprint
6. P. Kim, T.W. Odom and C.M. Lieber, AIP Conference Proceedings 486, (1999). “Electronic Properties of Novel Materials: Electronic Structures and Applications of Carbon Nanotubes.”
PDF Reprint
5. P. Kim, T.W. Odom, J.L. Huang and C.M. Lieber, Phys. Rev. Lett. 82, 1225-1228 (1999). “Electronic Density of States of Atomically Resolved Single-walled Carbon Nanotubes.”
PDF Reprint
4. J. Hu, T.W. Odom and C.M. Lieber, Acc. Chem. Res. 32, 435-445 (1999). “Chemistry and Physics in One-Dimension: Synthesis and Properties of Nanowires and Nanotubes.”
PDF Reprint
3. S.S. Wong, A.T. Woolley, T.W. Odom, J.L. Huang, P. Kim, D.V. Vezenov and C.M. Lieber, Appl. Phys. Lett. 73, 3465-3467 (1998). “Single-walled Carbon Nanotube Probes for High-Resolution Imaging.”
PDF Reprint
2. T.W. Odom, J.L. Huang, P. Kim, M. Ouyang and C.M. Lieber, J. Mater. Res. 13, 2380-2388 (1998). “Scanning Tunneling Microscopy and Spectroscopy Studies of Single-walled Carbon Nanotubes.
PDF Reprint
1. T.W. Odom, J.L. Huang, P. Kim and C.M. Lieber, Nature 391, 62-64 (1998). “Atomic Structure and Electronic Properties of Single-walled Carbon Nanotubes.
PDF Reprint