Nanophotonics and Nano-optics Publications


214. J. Guan, J. Hu, Y. Wang, G. C. Schatz, T. W. Odom, Nat. Nanotech. 18, 514-520 (2023). “Far-field coupling between moiré photonic lattices” DOI:10.1038/s41565-023-01320-7

212. A. D. Sample, J. Guan, J. Hu, F. Freire-Fernandez, S.-M. Park, R. D. Schaller, G. C. Schatz, T. W. Odom, J. Phys. Chem. C. 126, 18778-18783 (2022). “Polariton Formation from Soret Band Excitons in MetalOrganic Frameworks and Plasmonic Lattices.” DOI:10.1021/acs.jpcc.2c05464

203. X. G. Juarez, R. Li, J. Guan, T. Reese, R. D. Schaller, and T. W. Odom, ACS Photonics 9, 52-58 (2022). “M-Point Lasing in Hexagonal and Honeycomb Plasmonic Lattices.” DOI:10.1021/acsphotonics.1c01618

202. A. K. Boddeti, J. Guan, T. Sentz, X. Jaurez, W. Newman, C. Cortes, T. W. Odom, Z. Jacob, Nano Lett. 22, 22-28 (2021) “Long-Range Dipole-Dipole Interactions in a Plasmonic Lattice.” DOI:10.1021/acs.nanolett.1c02835

200. N. E. Watkins, J. Guan, B. T. Diroll, K. R. Williams, R. D. Schaller, and T. W. Odom, J. Phys. Chem. C 36, 19874-19879 (2021). “Surface Normal Lasing from CdSe Nanoplatelets Coupled to Aluminum Plasmonic Nanoparticle Lattices,” DOI:10.1021/acs.jpcc.1c05662

199. A. D. Sample, J. Guan, J. Hu, T. Reese, C. R. Cherqui, J. Park, F. Freire-Fernández, R. D. Schaller, G. C. Schatz, and T. W. Odom, Nano Letters 28, 7775-7780 (2021). “Strong Coupling Between Plasmons and Moleular Excitons in Metal-Organic FrameworksDOI: 10.1021/acs.nanolett.1c0274

198. J. Guan, R. Li, X. G. Juarez, A. D. Sample, Y. Wang, G. C. Schatz, and T. W. Odom, Adv. Mater. 2103262 (2021). “Plasmonic Nanoparticle Lattice Devices for White-Light Lasing,” DOI:10.1002/adma.202103262

197. T. Reese, A.N. Reed, A.D. Sample, F. Freire-Fernández, R.D. Schaller, A.U. Urbas, and T.W. Odom, ACS Photonics 8, 1556-1561 (2021). “Ultrafast Spectroscopy of Plasmonic Titanium Nitride Nanoparticle LatticesDOI: 10.1021/acsphotonics.1c00297

194. J. Aizpurua, H. Atwater, J. Baumberg, S. Bozhevolnyi, M. Brongersma, H. Giessen, N. Halas, Y. Kivshar, M. Kling, F. Krausz, S. Maier, S. Makarov, M. Mikkelsen, M. Moskovits, P. Nordlander, T.W. Odom, A. Polman, C.W. Qiu, M. Segev, V. Shalaev, P. Törmä, D.P. Tsai, E. Verhagen, A. Zayats, X. Zhang, and N.I. Zheludev, ACS Photonics 8, 683 – 698 (2021). “Mark Stockman: Evangelist for Plasmonics,” DOI: 10.1021/acsphotonics.1c00299

193. J. Guan, M.R. Bourgeois, R.Li, J. Hu, R.D. Schaller, G.C. Schatz, and T.W. Odom, ACS Nano 15, 5567 – 5573 (2021). “Identification of Brillouin Zones by In-Plane Lasing from Light-Cone Surface Lattice Resonancesdoi: 10.1021/acsnano.1c00449

191. R.K. Yadav, W. Liu, R. Li, T.W. Odom, G.S. Agarwal, and J.K. Basu, ACS Photonics 8, 576-584 (2021). “Room-Temperature Coupling of Single Photon Emitting Quantum Dots to Localized and Delocalized Modes in a Plasmonic Nanocavity Arraydoi: 10.1021/acsphotonics.0c01635

186. S. Deng, R. Li, J.-E. Park, J. Guan, P. Choo, J. Hu, P.J.M. Smeets, and T.W. Odom, Proc. Natl. Acad. Sci. 117, 23380-23384 (2020). “Ultranarrow Plasmon Resonances from Annealed Nanoparticle Lattices” doi: 10.1073/pnas.2008818117

181. R.K. Yadav, M.R. Bourgeois, C. Cherqui, X.G. Juarez, W. Wang, T.W. Odom, G.C. Schatz, and J.K. Basu, ACS Nano. 14, 7347-7357 (2020). “Room Temperature Weak-to-Strong Coupling and The Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays” doi:10.1021/acsnano.0c02785

180. R.K. Yadav, M. Otten, W. Wang, C.L. Cortes, D.J. Gosztola, G.P. Wiederrecht, S.K. Gary, T.W. Odom, and J.K. Basu, Nano Lett. 20, 5043-5049 (2020). “Strongly Coupled Exciton—Surface Lattice Resonances Engineer Long-Rang Energy Propagation” doi: 10.1021/acsnanolett.0c01236

175. J. Guan, L.K. Sagar, R. Li, D. Wang, G. Bappi, N.E. Watkins, M.R. Bourgeois, L. Levina, F. Fan, S. Hoogland, O.Voznyy, J.M. de Pina, R.D. Schaller, G.C. Schatz, E.H. Sargent, and T.W. Odom, Nano Lett. 20, 1468-1474 (2020). “Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices” doi: 10.1021/acs.nanolett.9b05342

172. X. Ao, D. Wang, and T.W. Odom, ACS Photonics 6, 2612-2617 (2019). “Enhanced Fields in Mirror-backed Low-Index Dielectric Structures” doi: 10.1021/acsphotonics.9b00931

172. X. Ao, D. Wang, and T.W. Odom, ACS Photonics 6, 2612-2617 (2019). “Enhanced Fields in Mirror-backed Low-Index Dielectric Structures” doi: 10.1021/acsphotonics.9b00931

170. D. Wang, J. Guan, J. Hu, M. Bourgeois, and T.W. Odom, Acc. Chem. Res. 52, 2997-3007 (2019). “Manipulating Light–Matter Interactions in Plasmonic Nanoparticle Lattices” doi: 10.1021/acs.accounts.9b00345

169. A. Fernandez-Bravo, D. Wang, C. Tajon, A. Teitelboim, J. Guan, G.C. Schatz, B.E. Cohen, E. Chan, P.J. Schuck, and T.W. Odom, Nat. Mater. 18, 1172-1176 (2019). “Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons” doi: 10.1038/s41563-019-0482-5

168. Y. Lin, D. Wang, J. Hu, J. Liu, W. Wang, J. Guan, R.D. Schaller, and T.W. Odom, Adv. Funct. Mater. 29, 1904157 (2019). “Engineering Symmetry-Breaking Nanocrescent Arrays for Nanolasing” doi: 10.1002/adfm.201904157

166. R. Li, M.R. Bourgeois, C. Cherqui, J. Guan, D. Wang, J. Hu, R.D. Schaller, G.C. Schatz, and T.W. Odom, Nano Lett. 19, 6435-6441 (2019). “Hierarchical Hybridization in Plasmonic Honeycomb Lattices” doi: 10.1021/acs.nanolett.9b02661

163. R. Li, D. Wang, J. Guan, W. Wang, X. Ao, G.C. Schatz, R. Schaller, and T.W. Odom, J. Opt. Soc. Am. B 36, E104-E111 (2019). “Plasmon nanolasing with aluminum nanoparticle arrays [Invited]” doi: 10.1364/josab.36.00e104

160. W. Wang, N. Watkins, A. Yang, R.D. Schaller, G.C. Schatz, and T.W. Odom, J. Phys. Chem. Lett. 10, 3301-3306 (2019). “Ultrafast Dynamics of Lattice Plasmon Lasers” doi: 10.1021/acs.jpclett.9b01076

158. M.P. Knudson, R. Li, D. Wang, W. Wang, R.D. Schaller, and T.W. Odom, ACS Nano 13, 7435-7441 (2019). “Polarization-Dependent Lasing Behavior from Low-Symmetry Nanocavity Arrays” doi: 10.1021/acsnano.9b01142

157. J. Hu, D. Wang, D. Bhowmik, T. Liu, S. Deng, M.P. Knudson, X. Ao, and T.W. Odom, ACS Nano 13, 4613-4620 (2019). “Lattice-Resonance Metalenses for Fully Reconfigurable Imaging” doi: 10.1021/acsnano.9b00651

156. J. Liu, W. Wang, D. Wang, J. Hu, W. Ding, R.D. Schaller, G.C. Schatz, and T.W. Odom, Proc. Natl. Acad. Sci. U.S.A. 116, 5925-5930 (2019). “Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays” doi: 10.1073/pnas.1818902116

155. Y. Hua, A.K. Fumani, and T.W. Odom, ACS Photonics 6, 322-326 (2019). “Tunable Lattice Plasmon Resonances in 1D Nanogratings” doi: 10.1021/acsphotonics.8b01541

154. D.C. Hooper, C. Kuppe, D. Wang, W. Wang, J. Guan, T.W. Odom, and V.K. Valev, Nano Lett. 19, 165-172 (2019). “Second Harmonic Spectroscopy of Surface Lattice Resonances” doi: 10.1021/acs.nanolett.8b03574

149. D. Wang, M.R. Bourgeois, W-K. Lee, R. Li, D. Trivedi, M.P. Knudson, W. Wang, G.C. Schatz, and T.W. Odom, Nano Lett. 18, 4549-4555 (2018). “Stretchable Nanolasing from Hybrid Quadrupole Plasmons” doi: 10.1021/acs.nanolett.8b01774

147. M.I. Stockman, K. Kneipp, S.I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V.M. Shalaev, A. Boltasseva, B. Gholipour, H.N.S. Krishnamoorthy, K.F. MacDonald, C. Soci, N.I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M.L. Solomon, D.R. Barton III, M. Lawrence, J.A. Dionne, S.V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T.W. Odom, N. Accanto, P.M. de Roque, I.M. Hancu, L. Piatkowski, N.F. van Hulst, and M.F. Kling, J. Opt. 20, 043001 (2018). “Roadmap on plasmonics” doi: 10.1088/2040-8986/aaa114

145. C. Deeb, Z. Guo, A. Yang, L. Huang, and T.W. Odom, Nano Lett. 18, 1454-1459 (2018). “Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays” doi: 10.1021/acs.nanolett.7b05223

143. D. Trivedi, D. Wang, T.W. Odom, and G.C. Schatz, Phys. Rev. A 96, 053825 (2017). “Model for describing plasmonic nanolasers using Maxwell-Liouville equations with finite-difference time-domain calculations” doi: 10.1103/PhysRevA.96.053825

142. W. Wang, M. Ramezani, A.I. Väkeväinen, P. Törmä, J.G. Rivas, and T.W. Odom, Mater. Today 21, 303-314 (2018). “The rich photonic world of plasmonic nanoparticle arrays” doi: 10.1016/j.mattod.2017.09.002

141. D. Wang, W. Wang, M.P. Knudson, G.C. Schatz, and T.W. Odom, Chem. Rev. 118, 2865-2881 (2017). “Structural Engineering in Plasmon Nanolasers” doi: 10.1021/acs.chemrev.7b00424

140. T.B. Hoang, G.M. Akselrod, A. Yang, T.W. Odom, and M.H. Mikkelsen, Nano Lett. 17, 6690-6695 (2017). “Millimeter-scale spatial coherence from a plasmon laser” doi: 10.1021/acs.nanolett.7b02677

139. M.P. Knudson, A.J. Hryn, M.D. Huntington, and T.W. Odom, ACS Appl. Mater. Interfaces 9, 33554-33558 (2017). “Sequential Feature-Density Doubling for Ultraviolet Plasmonics” doi: 10.1021/acsami.7b10842

135. D. Wang, A. Yang, W. Wang, Y. Hua, R.D. Schaller, G.C. Schatz, and T.W. Odom, Nat. Nanotechnol. 12, 889-894 (2017). “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices”
doi: 10.1038/nnano.2017.126

131. A. Yang, D. Wang, W. Wang, and T. W. Odom, Annu. Rev. Phys. Chem. 68, 83-99 (2017). “Coherent Light Sources at the Nanoscale” doi: 10.1146/annurev-physchem-052516-050730

130. T. T. Tran, D. Wang, Z-Q. Xu, A. Yang, M. Toth, T.W. Odom, and I. Aharonovich, Nano Lett. 17, 2634-2639 (2017). “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays”
doi: 10.1021/acs.nanolett.7b00444

128. J. Hu, X. Ren, A.N. Reed, T. Reese, D. Rhee, B. Howe, L.J. Lauhon, A.M. Urbas, and T.W. Odom, ACS Photonics 4, 606-612 (2017). “Evolutionary Design and Prototyping of Single Crystalline Titanium Nitride Lattice Optics”
doi: 10.1021/acsphotonics.6b00955

127. A. Yang, A.J. Hryn, M.R. Bourgeois, W-K. Lee, J. Hu, G.C. Schatz, and T.W. Odom, Proc. Natl. Acad. Sci. USA 113, 14201-14206 (2016). “Programmable and reversible plasmon mode engineering”
doi: 10.1073/pnas.1615281113

126. J. Hu, C-H. Liu, X. Ren, L.J. Lauhon, and T.W. Odom, ACS Nano 10, 10275-10282 (2016). “Plasmonic Lattice Lenses for Multiwavelength Achromatic Focusing”
doi: 10.1021/acsnano.6b05855

120. D. Wang, A. Yang, A.J. Hryn, G.C. Schatz, and T.W. Odom, ACS Photonics 2, 1789–1794 (2015). “Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays”
doi: 10.1021/acsphotonics.5b00546

118. A. Yang, Z. Li, M.P. Knudson, A.J. Hryn, W. Wang, K. Aydin, and T.W. Odom, ACS Nano 9, 11582-11588 (2015). “Unidirectional Lasing from Template-stripped Two-dimensional Plasmonic Crystals”
doi: 10.1021/acsnano.5b05419

115. T.W. Odom, R.M. Dickson, M.A. Duncan, and W. Tan, ACS Photonics 2, 787–789 (2015). “Shining a Light on the Molecular and Nanoscopic Worlds”
doi: 10.1021/acsphotonics.5b00337

114. A. Yang and T.W. Odom, IEEE Photonics Journal 7, 1–6 (2015). “Breakthroughs in Photonics 2014: Advances in Plasmonic Nanolasers”
doi: 10.1109/jphot.2015.2413773

113. A. Yang, T.B. Hoang, M. Dridi, C. Deeb, M.H. Mikkelsen, G.C. Schatz, and T.W. Odom, Nat. Commun. 6, 1–7 (2015). “Real-time tunable lasing from plasmonic nanocavity arrays”
doi: 10.1038/ncomms7939

108. M.D. Huntington, L.J. Lauhon, and T.W. Odom, Nano Letters 14, 7195-7200 (2014). “Subwavelength Lattice Optics by Evolutionary Design”
doi: 10.1021/nl5040573

105. A. Yang, M.D. Huntington, M.F. Cardinal, S.S. Masango, R.P. Van Duyne, and T.W. Odom, ACS Nano 8, 7639–7647 (2014).”Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing”
doi: 10.1021/nn502502r

103. S. Li, P. Guo, D.B. Buchholz, W. Zhou, Y. Hua, T.W. Odom, J.B. Ketterson, L.E. Ocola, K. Sakoda, and R.P.H. Chang, ACS Photonics 1, 163–172 (2014). “Plasmonic–Photonic Mode Coupling in Indium-Tin-Oxide Nanorod Arrays”
doi: 10.1021/ph400038g

101. S.M. Lubin, A.J. Hryn, M.D. Huntington, C.J. Engel, and T.W. Odom, ACS Nano. 7, 11035–11042 (2013). “Quasiperiodic Moiré Plasmonic Crystals”
doi: 10.1021/nn404703z

100. J.Y. Suh and T.W. Odom, Nano Today 8, 469–479 (2013). “Nonlinear Properties of Nanoscale Antennas”
doi: 10.1016/j.nantod.2013.08.010

99. W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, and T.W. Odom, Nat. Nanotechnol. 8, 506–511 (2013). “Lasing action in strongly coupled plasmonic nanocavity arrays”
doi: 10.1038/nnano.2013.99

94. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, Nano Letters 12, 5769–5774 (2012). “Plasmonic Bowtie Nanolaser Arrays”
doi: 10.1021/nl303086r

93. M.G. Blaber, C.J. Engel, S.R.C. Vivekchand, S.M. Lubin, T.W. Odom, and G.C. Schatz, Nano Letters 12, 5275–5280 (2012). “Eutectic Liquid Alloys for Plasmonics: Theory and Experiment”
doi: 10.1021/nl3025104

92. W. Zhou, J.Y. Suh, Y. Hua, and T.W. Odom, J. Phys. Chem. C 117, 2541–2546 (2012). “Hybridization of Localized and Guided Modes in 2D Metal-Insulator-Metal Nanocavity Arrays”
doi: 10.1021/jp306972j

91. T.W. Odom, E. You, and C.M. Sweeney, J. Phys. Chem. Lett. 3, 2611-2616 (2012). “Multi-scale Plasmonic Nanoparticles and the Inverse Problem” doi: 10.1021/jz300886z

88. S.R.C. Vivekchand, C.J. Engel, S.M. Lubin, M.G. Blaber, W. Zhou, J.Y. Suh, G.C. Schatz, and T.W. Odom, Nano Letters 12, 4324-4328 (2012). “Liquid Plasmonics: Manipulating Surface Plasmon Polaritons via Phase Transitions”
doi: 10.1021/nl302053g

87. Y. Hua, W. Zhou, J.Y. Suh, M.D. Huntington, and T.W. Odom, Opt. Express 20, 14284-14291 (2012). “The Talbot Effect Beyond the Paraxial Limit at Optical Frequencies”
doi: 10.11364/OE.20.014284

86. W. Zhou, Y. Hua, M.D. Huntington, and T.W. Odom, J. Phys. Chem. Lett. 3, 1229-1421 (2012). “Delocalized Lattice Plasmon Resonances Show Dispersive Quality Factors.”
doi: 10.1021/jz300318v

83. G. Kichin, T. Weiss, H. Gao, J. Henzie, T.W. Odom, S.G. Tikhodeev, and H. Giessen, Physica B: Condensed Matter 407, 4037-4042 (2012). “Metal-dielectric Photonic Crystal Superlattice: 1D and 2D Models and Empty Lattice Approximation.”
doi:10.1016/j.physb.2012.01.128

82. E. You, W. Zhou, J.Y. Suh, M.D. Huntington, and T.W. Odom, ACS Nano 6, 1786-1794 (2012). “Polarization-Dependent Multipolar Plasmon Resonances in Anisotropic Multiscale Au Particles.”
doi: 10.1021/nn204845z

81. J.Y. Suh, M.D. Huntington, C.-H. Kim, W. Zhou, M.R. Wasielewski and T.W. Odom, Nano Letters 12, 3318-3326 (2012). “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas.”
10.1021/nl2034915

80. S.Q. Li, P. Guo, L. Zhang, W. Zhou, T.W. Odom, T. Seideman, J.B. Ketterson, and R.P.H. Chang, ACS Nano 5, 9161-9170 (2011). “Infrared Plasmonics with Indium-Tin-Oxide Nanorod Arrays.”
doi: 10.1021/nn203406f

78. C.M. Sweeney, C.L. Nehl, W. Hasan, T. Liang, A.L. Eckermann, T.J. Meade, and T.W. Odom, J Phys. Chem. C 115, 15933-15937 (2011). “Three-Channel Spectrometer for Wide-Field Imaging of Anisostropic Plasmonic Nanoparticles.”
doi:10.1021/jp206157v

77. T.W. Odom and G.C. Schatz, Chem. Rev. 7, 3667-3668 (2011). “Introduction to Plasmonics.”
doi:10.1021/cr2001349

76. C.M. Sweeney, C.L. Stender, C.L. Nehl, W. Hasan, K.L. Shuford, and T.W. Odom, Small 7, 2032-2036 (2011). “Optical Properties of Tipless Gold Nanopyramids.”
doi:10.1002/smll.201100758

75. W. Zhou and T.W. Odom, Nat. Nanotechnol. 6, 423-427 (2011). “Tunable Subradiant Lattice Plasmons by Out-of-Plane Dipolar Interactions.”
doi:10.1038/nnano.2011.72

74. K.A. Stoerzinger, J.Y. Lin, and T.W. Odom, Chem. Sci. 2, 1435-1439 (2011). “Nanoparticle SERS Substrates with 3D Raman-Active Volumes.”
doi: 10.1039/C1SC00125F

72. H. Gao, J.K. Hyun, M.H. Lee, J.-C. Yang, L.J. Lauhon, and T.W. Odom, Nano Lett. 10, 4111-4116 (2010). “Broadband Plasmonic Microlenses Based on Patches of Nanoholes.”
doi: 10.1021/nl1022892

70. J.-C. Yang, H. Gao, J.Y. Suh, W. Zhou, M.H. Lee, and T.W. Odom, Nano Lett. 10, 3173-3178 (2010). “Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays.”
doi: 10.1021/nl102078j

65. W. Zhou, H. Gao, and T.W. Odom, ACS Nano 4, 1241-1247 (2010). “Toward Broadband Plasmonics: Tuning Dispersion in Rhombic Plasmonic Crystals.”
doi: 10.1021/nn901590p

64. J. Lin, W. Hasan, J.C. Yang, and T.W. Odom, J. Phys. Chem. C 114, 7432-7435 (2010). “Optical Properties of Nested Pyramidal Nanoshells.”
doi: 10.1021/jp910627r

62. H. Gao, W. Zhou, and T.W. Odom, Adv. Func. Mater 20, 523 (2010). “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library.”
doi: 10.1002/adfm.200901623

61. T.W. Odom, H. Gao, J.M. McMahon, J. Henzie, and G.C. Schatz, Chem. Phys. Lett. 483, 187-192 (2009). “Plasmonic Superlattices: Hierarchical Subwavelength Hole Arrays.”
doi: 10.1016/j.cplett.2009.10.084

58. M.H. Lee, H. Gao, and T.W. Odom, Nano Lett. 9, 2584-2588 (2009). “Refractive Index Sensing Using Quasi One-Dimensional Nanoslit Arrays.”
doi: 10.1021/nl900773m

56. Y. Babayan, J.M. McMahon, S. Li, S.K. Gray, G.C. Schatz, and T.W. Odom, ACS Nano 3, 615-620 (2009). “Confining Standing Waves in Optical Corrals.”
doi: 10.1021/nn8008596

55. H. Gao, J.M. McMahon, M.H. Lee, J. Henzie, S.K. Gray, G.C. Schatz, and T.W. Odom, Opt. Express 17, 2334-2340 (2009). “Rayleigh Anomaly-Surface Plasmon Polariton Resonances in Palladium and Gold Subwavelength Hole Arrays.”
PDF Reprint

54. C. M. Sweeney, W. Hasan, C.L. Nehl, and T.W. Odom, J. Phys. Chem. A 113, 4265-4268 (2009). “Optical Properties of Anisotropic Core-Shell Pyramidal Particles.”
doi: 10.1021/jp810837u

51. H. Gao, J. Henzie, M.H. Lee, and T.W. Odom, Proc. Natl. Acad. Sci. 105, 20146-20151 (2008). “Screening Plasmonic Materials using Pyramidal Gratings.”
doi: 10.1073/pnas.0809034105

46. K.L. Shuford, J. Lee, T.W. Odom, and G.C. Schatz, J. Phys. Chem. C 112, 6662-6666 (2008). “Optical Properties of Gold Pyramidal Shells.”
doi: 10.1021/jp8004844

44. J. McMahon, J. Henzie, T.W. Odom, G.C. Schatz, and S.K. Gray, Opt. Exp. 15, 18119-18129 (2007). “Tailoring the Sensing Capabilities of Nanohole Arrays in Gold Films with Rayleigh Anomaly-Surface Plasmon Polaritons.”
PDF Reprint

43. J. Lee, W. Hasan, M.H. Lee, and T.W. Odom, Adv. Mater. 19, 4387-4391 (2007). “Optical Properties and Magnetic Manipulation of Bi-Material Nanopyramids.”
doi: 10.1002/adma.200701505

36. Y. Gu, J.P. Romankiewicz, J.K. David, J.L. Lensch, E.S. Kwak, T.W. Odom, and L.J. Lauhon, J. Vac. Sci. Technol. B 24, 2172-2177 (2006). “Local Photocurrent Mapping as a Probe of Contact Effects and Charge Carrier Transport in Semiconductor Nanowire Devices.”
PDF Reprint

35. H. Gao, J. Henzie, and T.W. Odom, Nano Letters 6, 2104-2107 (2006). “Direct Evidence for Surface Plasmon-Mediated Enhanced Light Transmission through Metallic Nanohole Arrays.”
PDF Reprint

34. J. Henzie, K.L. Shuford, E.-S. Kwak, G.C. Schatz, and T.W. Odom, J. Phys. Chem. B 110, 14028-14031 (2006). “Manipulating the Optical Properties of Pyramidal Nanoparticle Arrays.”
PDF Reprint

30. E.-S. Kwak, J. Henzie, S.-T. Chang, S.T. Gray, G.C. Schatz, and T.W. Odom, Nano Letters 5, 1963-1967 (2005). “Surface Plasmon Standing Waves in Large-Area Subwavelength Hole Arrays.”
PDF Reprint

29. T.W. Odom, J. Henzie, Y. Babayan, E. C. Greyson, and E.-S. Kwak, Talanta 67, 507-513 (2005). “Optical Properties of Surface-Patterned Nanostructures.”

28. Y. Gu, E.-S. Kwak, J. L. Lensch, J. E. Allen, T. W. Odom, and L. J. Lauhon, Appl. Phys. Lett. 87, 43111-3 (2005). “Near-field Scanning Photocurrent Microscopy of a Nanowire Photodetector.” Cover article.
PDF Reprint