Nanophotonics and Nano-optics Publications
214. J. Guan, J. Hu, Y. Wang, G. C. Schatz, T. W. Odom, Nat. Nanotech. 18, 514-520 (2023). “Far-field coupling between moiré photonic lattices” DOI:10.1038/s41565-023-01320-7
212. A. D. Sample, J. Guan, J. Hu, F. Freire-Fernandez, S.-M. Park, R. D. Schaller, G. C. Schatz, T. W. Odom, J. Phys. Chem. C. 126, 18778-18783 (2022). “Polariton Formation from Soret Band Excitons in MetalOrganic Frameworks and Plasmonic Lattices.” DOI:10.1021/acs.jpcc.2c05464
203. X. G. Juarez, R. Li, J. Guan, T. Reese, R. D. Schaller, and T. W. Odom, ACS Photonics 9, 52-58 (2022). “M-Point Lasing in Hexagonal and Honeycomb Plasmonic Lattices.” DOI:10.1021/acsphotonics.1c01618
202. A. K. Boddeti, J. Guan, T. Sentz, X. Jaurez, W. Newman, C. Cortes, T. W. Odom, Z. Jacob, Nano Lett. 22, 22-28 (2021) “Long-Range Dipole-Dipole Interactions in a Plasmonic Lattice.” DOI:10.1021/acs.nanolett.1c02835
200. N. E. Watkins, J. Guan, B. T. Diroll, K. R. Williams, R. D. Schaller, and T. W. Odom, J. Phys. Chem. C 36, 19874-19879 (2021). “Surface Normal Lasing from CdSe Nanoplatelets Coupled to Aluminum Plasmonic Nanoparticle Lattices,” DOI:10.1021/acs.jpcc.1c05662
199. A. D. Sample, J. Guan, J. Hu, T. Reese, C. R. Cherqui, J. Park, F. Freire-Fernández, R. D. Schaller, G. C. Schatz, and T. W. Odom, Nano Letters 28, 7775-7780 (2021). “Strong Coupling Between Plasmons and Moleular Excitons in Metal-Organic Frameworks” DOI: 10.1021/acs.nanolett.1c0274
198. J. Guan, R. Li, X. G. Juarez, A. D. Sample, Y. Wang, G. C. Schatz, and T. W. Odom, Adv. Mater. 2103262 (2021). “Plasmonic Nanoparticle Lattice Devices for White-Light Lasing,” DOI:10.1002/adma.202103262
197. T. Reese, A.N. Reed, A.D. Sample, F. Freire-Fernández, R.D. Schaller, A.U. Urbas, and T.W. Odom, ACS Photonics 8, 1556-1561 (2021). “Ultrafast Spectroscopy of Plasmonic Titanium Nitride Nanoparticle Lattices” DOI: 10.1021/acsphotonics.1c00297
194. J. Aizpurua, H. Atwater, J. Baumberg, S. Bozhevolnyi, M. Brongersma, H. Giessen, N. Halas, Y. Kivshar, M. Kling, F. Krausz, S. Maier, S. Makarov, M. Mikkelsen, M. Moskovits, P. Nordlander, T.W. Odom, A. Polman, C.W. Qiu, M. Segev, V. Shalaev, P. Törmä, D.P. Tsai, E. Verhagen, A. Zayats, X. Zhang, and N.I. Zheludev, ACS Photonics 8, 683 – 698 (2021). “Mark Stockman: Evangelist for Plasmonics,” DOI: 10.1021/acsphotonics.1c00299
193. J. Guan, M.R. Bourgeois, R.Li, J. Hu, R.D. Schaller, G.C. Schatz, and T.W. Odom, ACS Nano 15, 5567 – 5573 (2021). “Identification of Brillouin Zones by In-Plane Lasing from Light-Cone Surface Lattice Resonances” doi: 10.1021/acsnano.1c00449
191. R.K. Yadav, W. Liu, R. Li, T.W. Odom, G.S. Agarwal, and J.K. Basu, ACS Photonics 8, 576-584 (2021). “Room-Temperature Coupling of Single Photon Emitting Quantum Dots to Localized and Delocalized Modes in a Plasmonic Nanocavity Array” doi: 10.1021/acsphotonics.0c01635
186. S. Deng, R. Li, J.-E. Park, J. Guan, P. Choo, J. Hu, P.J.M. Smeets, and T.W. Odom, Proc. Natl. Acad. Sci. 117, 23380-23384 (2020). “Ultranarrow Plasmon Resonances from Annealed Nanoparticle Lattices” doi: 10.1073/pnas.2008818117
181. R.K. Yadav, M.R. Bourgeois, C. Cherqui, X.G. Juarez, W. Wang, T.W. Odom, G.C. Schatz, and J.K. Basu, ACS Nano. 14, 7347-7357 (2020). “Room Temperature Weak-to-Strong Coupling and The Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays” doi:10.1021/acsnano.0c02785
180. R.K. Yadav, M. Otten, W. Wang, C.L. Cortes, D.J. Gosztola, G.P. Wiederrecht, S.K. Gary, T.W. Odom, and J.K. Basu, Nano Lett. 20, 5043-5049 (2020). “Strongly Coupled Exciton—Surface Lattice Resonances Engineer Long-Rang Energy Propagation” doi: 10.1021/acsnanolett.0c01236
175. J. Guan, L.K. Sagar, R. Li, D. Wang, G. Bappi, N.E. Watkins, M.R. Bourgeois, L. Levina, F. Fan, S. Hoogland, O.Voznyy, J.M. de Pina, R.D. Schaller, G.C. Schatz, E.H. Sargent, and T.W. Odom, Nano Lett. 20, 1468-1474 (2020). “Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices” doi: 10.1021/acs.nanolett.9b05342
172. X. Ao, D. Wang, and T.W. Odom, ACS Photonics 6, 2612-2617 (2019). “Enhanced Fields in Mirror-backed Low-Index Dielectric Structures” doi: 10.1021/acsphotonics.9b00931
172. X. Ao, D. Wang, and T.W. Odom, ACS Photonics 6, 2612-2617 (2019). “Enhanced Fields in Mirror-backed Low-Index Dielectric Structures” doi: 10.1021/acsphotonics.9b00931
170. D. Wang, J. Guan, J. Hu, M. Bourgeois, and T.W. Odom, Acc. Chem. Res. 52, 2997-3007 (2019). “Manipulating Light–Matter Interactions in Plasmonic Nanoparticle Lattices” doi: 10.1021/acs.accounts.9b00345
169. A. Fernandez-Bravo, D. Wang, C. Tajon, A. Teitelboim, J. Guan, G.C. Schatz, B.E. Cohen, E. Chan, P.J. Schuck, and T.W. Odom, Nat. Mater. 18, 1172-1176 (2019). “Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons” doi: 10.1038/s41563-019-0482-5
168. Y. Lin, D. Wang, J. Hu, J. Liu, W. Wang, J. Guan, R.D. Schaller, and T.W. Odom, Adv. Funct. Mater. 29, 1904157 (2019). “Engineering Symmetry-Breaking Nanocrescent Arrays for Nanolasing” doi: 10.1002/adfm.201904157
166. R. Li, M.R. Bourgeois, C. Cherqui, J. Guan, D. Wang, J. Hu, R.D. Schaller, G.C. Schatz, and T.W. Odom, Nano Lett. 19, 6435-6441 (2019). “Hierarchical Hybridization in Plasmonic Honeycomb Lattices” doi: 10.1021/acs.nanolett.9b02661
163. R. Li, D. Wang, J. Guan, W. Wang, X. Ao, G.C. Schatz, R. Schaller, and T.W. Odom, J. Opt. Soc. Am. B 36, E104-E111 (2019). “Plasmon nanolasing with aluminum nanoparticle arrays [Invited]” doi: 10.1364/josab.36.00e104
160. W. Wang, N. Watkins, A. Yang, R.D. Schaller, G.C. Schatz, and T.W. Odom, J. Phys. Chem. Lett. 10, 3301-3306 (2019). “Ultrafast Dynamics of Lattice Plasmon Lasers” doi: 10.1021/acs.jpclett.9b01076
158. M.P. Knudson, R. Li, D. Wang, W. Wang, R.D. Schaller, and T.W. Odom, ACS Nano 13, 7435-7441 (2019). “Polarization-Dependent Lasing Behavior from Low-Symmetry Nanocavity Arrays” doi: 10.1021/acsnano.9b01142
157. J. Hu, D. Wang, D. Bhowmik, T. Liu, S. Deng, M.P. Knudson, X. Ao, and T.W. Odom, ACS Nano 13, 4613-4620 (2019). “Lattice-Resonance Metalenses for Fully Reconfigurable Imaging” doi: 10.1021/acsnano.9b00651
156. J. Liu, W. Wang, D. Wang, J. Hu, W. Ding, R.D. Schaller, G.C. Schatz, and T.W. Odom, Proc. Natl. Acad. Sci. U.S.A. 116, 5925-5930 (2019). “Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays” doi: 10.1073/pnas.1818902116
155. Y. Hua, A.K. Fumani, and T.W. Odom, ACS Photonics 6, 322-326 (2019). “Tunable Lattice Plasmon Resonances in 1D Nanogratings” doi: 10.1021/acsphotonics.8b01541
154. D.C. Hooper, C. Kuppe, D. Wang, W. Wang, J. Guan, T.W. Odom, and V.K. Valev, Nano Lett. 19, 165-172 (2019). “Second Harmonic Spectroscopy of Surface Lattice Resonances” doi: 10.1021/acs.nanolett.8b03574
149. D. Wang, M.R. Bourgeois, W-K. Lee, R. Li, D. Trivedi, M.P. Knudson, W. Wang, G.C. Schatz, and T.W. Odom, Nano Lett. 18, 4549-4555 (2018). “Stretchable Nanolasing from Hybrid Quadrupole Plasmons” doi: 10.1021/acs.nanolett.8b01774
147. M.I. Stockman, K. Kneipp, S.I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V.M. Shalaev, A. Boltasseva, B. Gholipour, H.N.S. Krishnamoorthy, K.F. MacDonald, C. Soci, N.I. Zheludev, V. Savinov, R. Singh, P. Groß, C. Lienau, M. Vadai, M.L. Solomon, D.R. Barton III, M. Lawrence, J.A. Dionne, S.V. Boriskina, R. Esteban, J. Aizpurua, X. Zhang, S. Yang, D. Wang, W. Wang, T.W. Odom, N. Accanto, P.M. de Roque, I.M. Hancu, L. Piatkowski, N.F. van Hulst, and M.F. Kling, J. Opt. 20, 043001 (2018). “Roadmap on plasmonics” doi: 10.1088/2040-8986/aaa114
145. C. Deeb, Z. Guo, A. Yang, L. Huang, and T.W. Odom, Nano Lett. 18, 1454-1459 (2018). “Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays” doi: 10.1021/acs.nanolett.7b05223
143. D. Trivedi, D. Wang, T.W. Odom, and G.C. Schatz, Phys. Rev. A 96, 053825 (2017). “Model for describing plasmonic nanolasers using Maxwell-Liouville equations with finite-difference time-domain calculations” doi: 10.1103/PhysRevA.96.053825
142. W. Wang, M. Ramezani, A.I. Väkeväinen, P. Törmä, J.G. Rivas, and T.W. Odom, Mater. Today 21, 303-314 (2018). “The rich photonic world of plasmonic nanoparticle arrays” doi: 10.1016/j.mattod.2017.09.002
141. D. Wang, W. Wang, M.P. Knudson, G.C. Schatz, and T.W. Odom, Chem. Rev. 118, 2865-2881 (2017). “Structural Engineering in Plasmon Nanolasers” doi: 10.1021/acs.chemrev.7b00424
140. T.B. Hoang, G.M. Akselrod, A. Yang, T.W. Odom, and M.H. Mikkelsen, Nano Lett. 17, 6690-6695 (2017). “Millimeter-scale spatial coherence from a plasmon laser” doi: 10.1021/acs.nanolett.7b02677
139. M.P. Knudson, A.J. Hryn, M.D. Huntington, and T.W. Odom, ACS Appl. Mater. Interfaces 9, 33554-33558 (2017). “Sequential Feature-Density Doubling for Ultraviolet Plasmonics” doi: 10.1021/acsami.7b10842
135. D. Wang, A. Yang, W. Wang, Y. Hua, R.D. Schaller, G.C. Schatz, and T.W. Odom, Nat. Nanotechnol. 12, 889-894 (2017). “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices”
doi: 10.1038/nnano.2017.126
131. A. Yang, D. Wang, W. Wang, and T. W. Odom, Annu. Rev. Phys. Chem. 68, 83-99 (2017). “Coherent Light Sources at the Nanoscale” doi: 10.1146/annurev-physchem-052516-050730
130. T. T. Tran, D. Wang, Z-Q. Xu, A. Yang, M. Toth, T.W. Odom, and I. Aharonovich, Nano Lett. 17, 2634-2639 (2017). “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays”
doi: 10.1021/acs.nanolett.7b00444
128. J. Hu, X. Ren, A.N. Reed, T. Reese, D. Rhee, B. Howe, L.J. Lauhon, A.M. Urbas, and T.W. Odom, ACS Photonics 4, 606-612 (2017). “Evolutionary Design and Prototyping of Single Crystalline Titanium Nitride Lattice Optics”
doi: 10.1021/acsphotonics.6b00955
127. A. Yang, A.J. Hryn, M.R. Bourgeois, W-K. Lee, J. Hu, G.C. Schatz, and T.W. Odom, Proc. Natl. Acad. Sci. USA 113, 14201-14206 (2016). “Programmable and reversible plasmon mode engineering”
doi: 10.1073/pnas.1615281113
126. J. Hu, C-H. Liu, X. Ren, L.J. Lauhon, and T.W. Odom, ACS Nano 10, 10275-10282 (2016). “Plasmonic Lattice Lenses for Multiwavelength Achromatic Focusing”
doi: 10.1021/acsnano.6b05855
120. D. Wang, A. Yang, A.J. Hryn, G.C. Schatz, and T.W. Odom, ACS Photonics 2, 1789–1794 (2015). “Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays”
doi: 10.1021/acsphotonics.5b00546
118. A. Yang, Z. Li, M.P. Knudson, A.J. Hryn, W. Wang, K. Aydin, and T.W. Odom, ACS Nano 9, 11582-11588 (2015). “Unidirectional Lasing from Template-stripped Two-dimensional Plasmonic Crystals”
doi: 10.1021/acsnano.5b05419
115. T.W. Odom, R.M. Dickson, M.A. Duncan, and W. Tan, ACS Photonics 2, 787–789 (2015). “Shining a Light on the Molecular and Nanoscopic Worlds”
doi: 10.1021/acsphotonics.5b00337
114. A. Yang and T.W. Odom, IEEE Photonics Journal 7, 1–6 (2015). “Breakthroughs in Photonics 2014: Advances in Plasmonic Nanolasers”
doi: 10.1109/jphot.2015.2413773
113. A. Yang, T.B. Hoang, M. Dridi, C. Deeb, M.H. Mikkelsen, G.C. Schatz, and T.W. Odom, Nat. Commun. 6, 1–7 (2015). “Real-time tunable lasing from plasmonic nanocavity arrays”
doi: 10.1038/ncomms7939
108. M.D. Huntington, L.J. Lauhon, and T.W. Odom, Nano Letters 14, 7195-7200 (2014). “Subwavelength Lattice Optics by Evolutionary Design”
doi: 10.1021/nl5040573
105. A. Yang, M.D. Huntington, M.F. Cardinal, S.S. Masango, R.P. Van Duyne, and T.W. Odom, ACS Nano 8, 7639–7647 (2014).”Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing”
doi: 10.1021/nn502502r
103. S. Li, P. Guo, D.B. Buchholz, W. Zhou, Y. Hua, T.W. Odom, J.B. Ketterson, L.E. Ocola, K. Sakoda, and R.P.H. Chang, ACS Photonics 1, 163–172 (2014). “Plasmonic–Photonic Mode Coupling in Indium-Tin-Oxide Nanorod Arrays”
doi: 10.1021/ph400038g
101. S.M. Lubin, A.J. Hryn, M.D. Huntington, C.J. Engel, and T.W. Odom, ACS Nano. 7, 11035–11042 (2013). “Quasiperiodic Moiré Plasmonic Crystals”
doi: 10.1021/nn404703z
100. J.Y. Suh and T.W. Odom, Nano Today 8, 469–479 (2013). “Nonlinear Properties of Nanoscale Antennas”
doi: 10.1016/j.nantod.2013.08.010
99. W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, and T.W. Odom, Nat. Nanotechnol. 8, 506–511 (2013). “Lasing action in strongly coupled plasmonic nanocavity arrays”
doi: 10.1038/nnano.2013.99
94. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, Nano Letters 12, 5769–5774 (2012). “Plasmonic Bowtie Nanolaser Arrays”
doi: 10.1021/nl303086r
93. M.G. Blaber, C.J. Engel, S.R.C. Vivekchand, S.M. Lubin, T.W. Odom, and G.C. Schatz, Nano Letters 12, 5275–5280 (2012). “Eutectic Liquid Alloys for Plasmonics: Theory and Experiment”
doi: 10.1021/nl3025104
92. W. Zhou, J.Y. Suh, Y. Hua, and T.W. Odom, J. Phys. Chem. C 117, 2541–2546 (2012). “Hybridization of Localized and Guided Modes in 2D Metal-Insulator-Metal Nanocavity Arrays”
doi: 10.1021/jp306972j
91. T.W. Odom, E. You, and C.M. Sweeney, J. Phys. Chem. Lett. 3, 2611-2616 (2012). “Multi-scale Plasmonic Nanoparticles and the Inverse Problem” doi: 10.1021/jz300886z
88. S.R.C. Vivekchand, C.J. Engel, S.M. Lubin, M.G. Blaber, W. Zhou, J.Y. Suh, G.C. Schatz, and T.W. Odom, Nano Letters 12, 4324-4328 (2012). “Liquid Plasmonics: Manipulating Surface Plasmon Polaritons via Phase Transitions”
doi: 10.1021/nl302053g
87. Y. Hua, W. Zhou, J.Y. Suh, M.D. Huntington, and T.W. Odom, Opt. Express 20, 14284-14291 (2012). “The Talbot Effect Beyond the Paraxial Limit at Optical Frequencies”
doi: 10.11364/OE.20.014284
86. W. Zhou, Y. Hua, M.D. Huntington, and T.W. Odom, J. Phys. Chem. Lett. 3, 1229-1421 (2012). “Delocalized Lattice Plasmon Resonances Show Dispersive Quality Factors.”
doi: 10.1021/jz300318v
83. G. Kichin, T. Weiss, H. Gao, J. Henzie, T.W. Odom, S.G. Tikhodeev, and H. Giessen, Physica B: Condensed Matter 407, 4037-4042 (2012). “Metal-dielectric Photonic Crystal Superlattice: 1D and 2D Models and Empty Lattice Approximation.”
doi:10.1016/j.physb.2012.01.128
82. E. You, W. Zhou, J.Y. Suh, M.D. Huntington, and T.W. Odom, ACS Nano 6, 1786-1794 (2012). “Polarization-Dependent Multipolar Plasmon Resonances in Anisotropic Multiscale Au Particles.”
doi: 10.1021/nn204845z
81. J.Y. Suh, M.D. Huntington, C.-H. Kim, W. Zhou, M.R. Wasielewski and T.W. Odom, Nano Letters 12, 3318-3326 (2012). “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas.”
10.1021/nl2034915
80. S.Q. Li, P. Guo, L. Zhang, W. Zhou, T.W. Odom, T. Seideman, J.B. Ketterson, and R.P.H. Chang, ACS Nano 5, 9161-9170 (2011). “Infrared Plasmonics with Indium-Tin-Oxide Nanorod Arrays.”
doi: 10.1021/nn203406f
78. C.M. Sweeney, C.L. Nehl, W. Hasan, T. Liang, A.L. Eckermann, T.J. Meade, and T.W. Odom, J Phys. Chem. C 115, 15933-15937 (2011). “Three-Channel Spectrometer for Wide-Field Imaging of Anisostropic Plasmonic Nanoparticles.”
doi:10.1021/jp206157v
77. T.W. Odom and G.C. Schatz, Chem. Rev. 7, 3667-3668 (2011). “Introduction to Plasmonics.”
doi:10.1021/cr2001349
76. C.M. Sweeney, C.L. Stender, C.L. Nehl, W. Hasan, K.L. Shuford, and T.W. Odom, Small 7, 2032-2036 (2011). “Optical Properties of Tipless Gold Nanopyramids.”
doi:10.1002/smll.201100758
75. W. Zhou and T.W. Odom, Nat. Nanotechnol. 6, 423-427 (2011). “Tunable Subradiant Lattice Plasmons by Out-of-Plane Dipolar Interactions.”
doi:10.1038/nnano.2011.72
74. K.A. Stoerzinger, J.Y. Lin, and T.W. Odom, Chem. Sci. 2, 1435-1439 (2011). “Nanoparticle SERS Substrates with 3D Raman-Active Volumes.”
doi: 10.1039/C1SC00125F
72. H. Gao, J.K. Hyun, M.H. Lee, J.-C. Yang, L.J. Lauhon, and T.W. Odom, Nano Lett. 10, 4111-4116 (2010). “Broadband Plasmonic Microlenses Based on Patches of Nanoholes.”
doi: 10.1021/nl1022892
70. J.-C. Yang, H. Gao, J.Y. Suh, W. Zhou, M.H. Lee, and T.W. Odom, Nano Lett. 10, 3173-3178 (2010). “Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays.”
doi: 10.1021/nl102078j
65. W. Zhou, H. Gao, and T.W. Odom, ACS Nano 4, 1241-1247 (2010). “Toward Broadband Plasmonics: Tuning Dispersion in Rhombic Plasmonic Crystals.”
doi: 10.1021/nn901590p
64. J. Lin, W. Hasan, J.C. Yang, and T.W. Odom, J. Phys. Chem. C 114, 7432-7435 (2010). “Optical Properties of Nested Pyramidal Nanoshells.”
doi: 10.1021/jp910627r
62. H. Gao, W. Zhou, and T.W. Odom, Adv. Func. Mater 20, 523 (2010). “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library.”
doi: 10.1002/adfm.200901623
61. T.W. Odom, H. Gao, J.M. McMahon, J. Henzie, and G.C. Schatz, Chem. Phys. Lett. 483, 187-192 (2009). “Plasmonic Superlattices: Hierarchical Subwavelength Hole Arrays.”
doi: 10.1016/j.cplett.2009.10.084
58. M.H. Lee, H. Gao, and T.W. Odom, Nano Lett. 9, 2584-2588 (2009). “Refractive Index Sensing Using Quasi One-Dimensional Nanoslit Arrays.”
doi: 10.1021/nl900773m
56. Y. Babayan, J.M. McMahon, S. Li, S.K. Gray, G.C. Schatz, and T.W. Odom, ACS Nano 3, 615-620 (2009). “Confining Standing Waves in Optical Corrals.”
doi: 10.1021/nn8008596
55. H. Gao, J.M. McMahon, M.H. Lee, J. Henzie, S.K. Gray, G.C. Schatz, and T.W. Odom, Opt. Express 17, 2334-2340 (2009). “Rayleigh Anomaly-Surface Plasmon Polariton Resonances in Palladium and Gold Subwavelength Hole Arrays.”
PDF Reprint
54. C. M. Sweeney, W. Hasan, C.L. Nehl, and T.W. Odom, J. Phys. Chem. A 113, 4265-4268 (2009). “Optical Properties of Anisotropic Core-Shell Pyramidal Particles.”
doi: 10.1021/jp810837u
51. H. Gao, J. Henzie, M.H. Lee, and T.W. Odom, Proc. Natl. Acad. Sci. 105, 20146-20151 (2008). “Screening Plasmonic Materials using Pyramidal Gratings.”
doi: 10.1073/pnas.0809034105
46. K.L. Shuford, J. Lee, T.W. Odom, and G.C. Schatz, J. Phys. Chem. C 112, 6662-6666 (2008). “Optical Properties of Gold Pyramidal Shells.”
doi: 10.1021/jp8004844
44. J. McMahon, J. Henzie, T.W. Odom, G.C. Schatz, and S.K. Gray, Opt. Exp. 15, 18119-18129 (2007). “Tailoring the Sensing Capabilities of Nanohole Arrays in Gold Films with Rayleigh Anomaly-Surface Plasmon Polaritons.”
PDF Reprint
43. J. Lee, W. Hasan, M.H. Lee, and T.W. Odom, Adv. Mater. 19, 4387-4391 (2007). “Optical Properties and Magnetic Manipulation of Bi-Material Nanopyramids.”
doi: 10.1002/adma.200701505
36. Y. Gu, J.P. Romankiewicz, J.K. David, J.L. Lensch, E.S. Kwak, T.W. Odom, and L.J. Lauhon, J. Vac. Sci. Technol. B 24, 2172-2177 (2006). “Local Photocurrent Mapping as a Probe of Contact Effects and Charge Carrier Transport in Semiconductor Nanowire Devices.”
PDF Reprint
35. H. Gao, J. Henzie, and T.W. Odom, Nano Letters 6, 2104-2107 (2006). “Direct Evidence for Surface Plasmon-Mediated Enhanced Light Transmission through Metallic Nanohole Arrays.”
PDF Reprint
34. J. Henzie, K.L. Shuford, E.-S. Kwak, G.C. Schatz, and T.W. Odom, J. Phys. Chem. B 110, 14028-14031 (2006). “Manipulating the Optical Properties of Pyramidal Nanoparticle Arrays.”
PDF Reprint
30. E.-S. Kwak, J. Henzie, S.-T. Chang, S.T. Gray, G.C. Schatz, and T.W. Odom, Nano Letters 5, 1963-1967 (2005). “Surface Plasmon Standing Waves in Large-Area Subwavelength Hole Arrays.”
PDF Reprint
29. T.W. Odom, J. Henzie, Y. Babayan, E. C. Greyson, and E.-S. Kwak, Talanta 67, 507-513 (2005). “Optical Properties of Surface-Patterned Nanostructures.”
28. Y. Gu, E.-S. Kwak, J. L. Lensch, J. E. Allen, T. W. Odom, and L. J. Lauhon, Appl. Phys. Lett. 87, 43111-3 (2005). “Near-field Scanning Photocurrent Microscopy of a Nanowire Photodetector.” Cover article.
PDF Reprint