Nanomedicine and Bioimaging Publications
207. K. Lee, I. Jung, T. W. Odom, J. Am. Chem. Soc. 12, 5274-5279(2022). “Delivery Order of Nanoconstructs Affects Intracellular Trafficking by Endosomes.” DOI:10.1021/jacs.2c02276
206. J-E. Park, R. Lopez-Arteaga, A. D. Sample, C. R. Cherqui, I. Spanopoulos, J. Guan, M. G. Kanatzidis, G. C. Schatz, E. A. Weiss, T. W. Odom, ACS Nano. 3, 3917-3925(2022). “Polariton Dynamics in Two-Dimensional Ruddlesden-Popper Perovskites Strongly Coupled with Plasmonic Lattices.” DOI:10.1021/acsnano.1c09296
205. P. Choo, D. Arenas-Estban, I. Jung, W. J. Chang, E. A. Weiss, S. Bals, T. W. Odom ACS Nano 3, 4408-4414(2022). “Investigating Reaction Intermediates during the Seedless Growth of Gold Nanostars Using Electron Tomography” DOI:10.1021/acsnano.1c10669
195. P. Choo, T. Liu, and T.W. Odom, J. Am. Chem. Soc. 143, 4500-4555 (2021). “Nanoparticle Shape Determines Dynamics of Targeting Nanoconstructs on Cell Membranes” doi: 10.1021/jacs.1c00850
192. E.E. Coughlin, J. Hu, A. Lee, and T.W. Odom, J. Am. Chem. Soc. 143, 3671 – 3676 (2021). “Light-Mediated Directed Placement of Different DNA Sequences on Single Gold Nanoparticles” doi: 10.1021/jacs.0c11699
187. J. Hu, T. Liu, P. Choo, S. Wang, T. Reese, A. Sample, and T.W. Odom, ACS Cent. Sci. 6, 2339-2346 (2020). “Single-Nanoparticle Orientation Sensing by Deep Learning” doi: 10.1021/acscentsci.0c01252
185. K. Lee, Z.N. Huang, C.A. Mirkin, and T.W. Odom, Nano Lett. 20, 6170-6175 (2020). “Endosomal Organization of CpG Constructs Correlates with Enhanced Immune Activation” doi: 10.1021/acs.nanolett.0c02536
179. J. Pettine, P. Choo, F. Medeghini, T.W. Odom, and D.J. Nesbitt, Nat. Commun. 11, 1367 (2020). “Plasmonic nanostar photocathodes for optically-controlled directional currents” doi: 10.1038/s41467-020-15115-0
177. B. Hu, C. Berkey, T.J. Feliciano, X. Chen, Z. Li, C. Chen, S. Amini, M.H. Nai, Q.‐L. Lei, R. Ni, J. Wang, W.R. Leow, S. Pan, Y.‐Q. Li, P. Cai, A. Miserez, S. Li, C.T. Lim, Y.‐L. Wu, T.W. Odom, R.H. Dauskardt, X. Chen, Adv. Mater. 32, 1907030 (2020). “Thermal‐Disrupting Interface Mitigates Intercellular Cohesion Loss for Accurate Topical Antibacterial Therapy” doi: 10.1002/adma.201907030
167. R.M. Pallares, T. Stilson, P. Choo, J. Hu, and T.W. Odom, ACS App. Nano Mater. 2, 5266-5271 (2019). “Using Good’s Buffers To Control the Anisotropic Structure and Optical Properties of Spiky Gold Nanoparticles for Refractive Index Sensing” doi: 10.1021/acsanm.9b01117
165. D. Bhowmik, K.S.B. Culver, T. Liu, and T.W. Odom, ACS Nano 13, 13637-13644 (2019). “Resolving Single-Nanoconstruct Dynamics during Targeting and Nontargeting Live-Cell Membrane Interactions” doi: 10.1021/acsnano.9b03144
162. R.M. Pallares, P. Choo, L.E. Cole, C.A. Mirkin, A. Lee, and T.W. Odom, Bioconjugate Chem. 30, 2032-2037 (2019). “Manipulating Immune Activation of Macrophages by Tuning the Oligonucleotide Composition of Gold Nanoparticles” doi: 10.1021/acs.bioconjchem.9b00316
159. M.J. Eller, K. Chandra, E.E. Coughlin, T.W. Odom, and E.A. Schweikert, Anal. Chem. 91, 5566-5572 (2019). “Label Free Particle-by-Particle Quantification of DNA Loading on Sorted Gold Nanostars” doi: 10.1021/acs.analchem.8b03715
152. P. Choo, A.J. Hryn, K.S. Culver, D. Bhowmik, J. Hu, and T.W. Odom, J. Phys. Chem. C 122, 27024-27031 (2018). “Wavelength-Dependent Differential Interference Contrast Inversion of Anisotropic Gold Nanoparticles” doi: 10.1021/acs.jpcc.8b08995
150. J. Yue, R.M. Pallares, L.E. Cole, E.E. Coughlin, C.A. Mirkin, A. Lee, and T.W. Odom, ACS Appl. Mater. Interfaces 10, 21920-21926 (2018). “Smaller CpG-Conjugated Gold Nanoconstructs Achieve Higher Targeting Specificity of Immune Activation” doi: 10.1021/acsami.8b06633
148. K.S.B. Culver, T. Liu, A.J. Hryn, N. Fang, and T.W. Odom, J. Phys. Chem. Lett. 9, 2886-2892 (2018). “In Situ Identification of Nanoparticle Structural Information Using Optical Microscopy” doi: 10.1021/acs.jpclett.8b01191
146. K. Chandra, B.K. Rugg, M.A. Ratner, M.R. Wasielewski, and T.W. Odom, J. Am. Chem. Soc. 140, 3219-3222 (2018). “Detecting and Visualizing Reaction Intermediates of Anisotropic Nanoparticle Growth” doi: 10.1021/jacs.8b00124
138. K. Chandra, V. Kumar, S.E. Werner, and T.W. Odom, ACS Omega 2, 4878-4884 (2017). “Separation of Stabilized MOPS Gold Nanostars by Density Gradient Centrifugation” doi: 10.1021/acsomega.7b00871
134. J. Yue, T.J. Feliciano, W. Li, A. Lee, and T. W. Odom, Bioconjugate Chem. 28, 1791-1800 (2017). “Gold Nanoparticle Size and Shape Effects on Cellular Uptake and Intracellular Distribution of siRNA Nanoconstructs” doi: 10.1021/acs.bioconjchem.7b00252
124. K.S.B. Culver, Y.J. Shin, M.W. Rotz, T.J. Meade, M.C. Hersam, and T.W. Odom, J. Phys. Chem. C 120, 22103-22109 (2016). “Shape-Dependent Relaxivity of Nanoparticle-Based T1 Magnetic Resonance Imaging Contrast Agents”
doi: 10.1021/acs.jpcc.6b08362
123. K. Chandra, K.S.B. Culver, S.E. Werner, R.C. Lee, and T.W. Odom, Chemistry of Materials 28, 6763-6769 (2016). “Manipulating the Anisotropic Structure of Gold Nanostars using Good’s Buffer”
doi: 10.1021/acs.chemmater.6b03242
119. Y. Hua, K. Chandra, D.H.M. Dam, G.P. Wiederrecht, and T.W. Odom, J. Phys. Chem. Lett., 6, 4904–4908 (2015). “Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles”
doi: 10.1021/acs.jpclett.5b02263
117. H. Lee, D.H.M. Dam, J.W. Ha, J. Yue, and T.W. Odom, ACS Nano 9, 9859–9867 (2015). “Enhanced Human Epidermal Growth Factor Receptor 2 Degradation in Breast Cancer Cells by Lysosome-Targeting Gold Nanoconstructs”
doi: 10.1021/acsnano.5b05138
112. M.W. Rotz, K.S.B. Culver, G. Parigi, K.W. MacRenaris, C. Luchinat, T.W. Odom, and T. J. Meade, ACS Nano 9, 3385–3396 (2015). “High Relaxivity Gd(III)-DNA Gold Nanostars: Investigation of Shape Effects on Proton Relaxation”
doi: 10.1021/nn5070953
111. D.H.M. Dam, H. Lee, R.C. Lee, K.H. Kim, N.L. Kelleher, and T.W. Odom, Bioconjugate Chem. 26, 279–285 (2015). “Tunable Loading of Oligonucleotides with Secondary Structure on Gold Nanoparticles through a pH-driven Method”
doi: 10.1021/bc500562s
110. H. Lee and T.W. Odom, Nanomedicine 10, 177-180 (2015) “Controlling Ligand Density on Nanoparticles as a Means to Enhance Biological Activity”
doi: 10.2217/nnm.14.204
109. D.H.M. Dam, K.S.B. Culver, I. Kandela, R.C. Lee, K. Chandra, H. Lee, C. Mantis, A. Ugolkov, A.P. Mazar, and T.W. Odom, Nanomedicine 11, 671-679 (2015). “Biodistribution and in Vivo Toxicity of Aptamer-Loaded Gold Nanostars”
doi: 10.1016/j.nano.2014.10.005
104. D.H.M. Dam, R.C. Lee, and T.W. Odom, Nano Letters 14, 2843–2848 (2014). “Improved in Vitro Efficacy of Gold Nanoconstructs by Increased Loading of G-quadruplex Aptamer”
doi: 10.1021/nl500844m
102. D.H.M. Dam, K.S.B. Culver, and T.W. Odom, Mol. Pharmaceutics. 11, 580–587 (2014). “Grafting Aptamers onto Gold Nanostars Increases in Vitro Efficacy in a Wide Range of Cancer Cell Types”
doi: 10.1021/mp4005657
96. J.Y. Lin, A.D. Stuparu, M.D. Huntington, M. Mrksich, and T.W. Odom, J. Phys. Chem. C 117, 5286-5292 (2013). “Nanopatterned Substrates Increase Surface Sensitivity for Real-Time Biosensing”
doi: 10.1021/jp401598a
95. D.H.M. Dam, K.S.B. Culver, P.N. Sisco, and T.W. Odom, Therapeutic Delivery 11, 1263-1267 (2012). “Shining Light on Nuclear-Targeted Therapy using Gold Nanostar Constructs”
doi: 10.4155/tde.12.107
85. D.H.M. Dam, J. Lee, P. Sisco, D. Co, M. Zhang, M.R. Wasielewski, and T.W. Odom, ACS Nano 6, 3318-3326 (2012). “Direct Observation of Nanoparticle-Cancer Cell Nucleus Interactions.”
doi: 10.1021/nn300296p
69. H. Gao, J.-C. Yang, J.Y. Lin, A. Stuparu, M.H. Lee, M. Mrksich, and T.W. Odom, Nano Lett. 10, 2549-2554 (2010). “Using the Angle-Dependent Resonances of Molded Plasmonic Crystals to Improve the Sensitivities of Biosensors.”
doi: 10.1021/nl101165r
45. L. Wang, M. H. Lee, J. Barton, L. Hughes, and T.W. Odom, JACS 130, 2142-2143 (2008). “Shape-Control of Protein Crystals in Patterned Microwells.”
doi: 10.1021/ja077956v