Nanomedicine and Bioimaging Publications

207. K. Lee, I. Jung, T. W. Odom, J. Am. Chem. Soc. ASAP, (2022). “Delivery Order of Nanoconstructs Affects Intracellular Trafficking by Endosomes.” DOI:10.1021/jacs.2c02276

206. J-E. Park, R. Lopez-Arteaga, A. D. Sample, C. R. Cherqui, I. Spanopoulos, J. Guan, M. G. Kanatzidis, G. C. Schatz, E. A. Weiss, T. W. Odom, ACS Nano. ASAP (2022). “Polariton Dynamics in Two-Dimensional Ruddlesden-Popper Perovskites Strongly Coupled with Plasmonic Lattices.” DOI:10.1021/acsnano.1c09296

205. P. Choo, D. Arenas-Estban, I. Jung, W. J. Chang, E. A. Weiss, S. Bals, T. W. Odom ACS Nano ASAP (2022). “Investigating Reaction Intermediates during the Seedless Growth of Gold Nanostars Using Electron Tomography”  DOI:10.1021/acsnano.1c10669

195. P. Choo, T. Liu, and T.W. Odom, J. Am. Chem. Soc. ASAP (2021). “Nanoparticle Shape Determines Dynamics of Targeting Nanoconstructs on Cell Membranes” doi: 10.1021/jacs.1c00850

192. E.E. Coughlin, J. Hu, A. Lee, and T.W. Odom, J. Am. Chem. Soc. 143, 3671 – 3676 (2021). “Light-Mediated Directed Placement of Different DNA Sequences on Single Gold Nanoparticlesdoi: 10.1021/jacs.0c11699

187. J. Hu, T. Liu, P. Choo, S. Wang, T. Reese, A. Sample, and T.W. Odom, ACS Cent. Sci. 6, 2339-2346 (2020). “Single-Nanoparticle Orientation Sensing by Deep Learning” doi: 10.1021/acscentsci.0c01252

185. K. Lee, Z.N. Huang, C.A. Mirkin, and T.W. Odom, Nano Lett. 20, 6170-6175 (2020). “Endosomal Organization of CpG Constructs Correlates with Enhanced Immune Activation” doi: 10.1021/acs.nanolett.0c02536

179. J. Pettine, P. Choo, F. Medeghini, T.W. Odom, and D.J. Nesbitt, Nat. Commun. 11, 1367 (2020). “Plasmonic nanostar photocathodes for optically-controlled directional currents” doi: 10.1038/s41467-020-15115-0

177. B. Hu, C. Berkey, T.J. Feliciano, X. Chen, Z. Li, C. Chen, S. Amini, M.H. Nai, Q.‐L. Lei, R. Ni, J. Wang, W.R. Leow, S. Pan, Y.‐Q. Li, P. Cai, A. Miserez, S. Li, C.T. Lim, Y.‐L. Wu, T.W. Odom, R.H. Dauskardt, X. Chen, Adv. Mater. 32, 1907030 (2020). “Thermal‐Disrupting Interface Mitigates Intercellular Cohesion Loss for Accurate Topical Antibacterial Therapy” doi: 10.1002/adma.201907030

167. R.M. Pallares, T. Stilson, P. Choo, J. Hu, and T.W. Odom, ACS App. Nano Mater. 2, 5266-5271 (2019). “Using Good’s Buffers To Control the Anisotropic Structure and Optical Properties of Spiky Gold Nanoparticles for Refractive Index Sensing” doi: 10.1021/acsanm.9b01117

165. D. Bhowmik, K.S.B. Culver, T. Liu, and T.W. Odom, ACS Nano 13, 13637-13644 (2019). “Resolving Single-Nanoconstruct Dynamics during Targeting and Nontargeting Live-Cell Membrane Interactions” doi: 10.1021/acsnano.9b03144

162. R.M. Pallares, P. Choo, L.E. Cole, C.A. Mirkin, A. Lee, and T.W. Odom, Bioconjugate Chem. 30, 2032-2037 (2019). “Manipulating Immune Activation of Macrophages by Tuning the Oligonucleotide Composition of Gold Nanoparticles” doi: 10.1021/acs.bioconjchem.9b00316

159. M.J. Eller, K. Chandra, E.E. Coughlin, T.W. Odom, and E.A. Schweikert, Anal. Chem. 91, 5566-5572 (2019). “Label Free Particle-by-Particle Quantification of DNA Loading on Sorted Gold Nanostars” doi: 10.1021/acs.analchem.8b03715

152. P. Choo, A.J. Hryn, K.S. Culver, D. Bhowmik, J. Hu, and T.W. Odom, J. Phys. Chem. C 122, 27024-27031 (2018). “Wavelength-Dependent Differential Interference Contrast Inversion of Anisotropic Gold Nanoparticles” doi: 10.1021/acs.jpcc.8b08995

150. J. Yue, R.M. Pallares, L.E. Cole, E.E. Coughlin, C.A. Mirkin, A. Lee, and T.W. Odom, ACS Appl. Mater. Interfaces 10, 21920-21926 (2018). “Smaller CpG-Conjugated Gold Nanoconstructs Achieve Higher Targeting Specificity of Immune Activation” doi: 10.1021/acsami.8b06633

148. K.S.B. Culver, T. Liu, A.J. Hryn, N. Fang, and T.W. Odom, J. Phys. Chem. Lett. 9, 2886-2892 (2018). “In Situ Identification of Nanoparticle Structural Information Using Optical Microscopy” doi: 10.1021/acs.jpclett.8b01191

146. K. Chandra, B.K. Rugg, M.A. Ratner, M.R. Wasielewski, and T.W. Odom, J. Am. Chem. Soc. 140, 3219-3222 (2018). “Detecting and Visualizing Reaction Intermediates of Anisotropic Nanoparticle Growth” doi: 10.1021/jacs.8b00124

138. K. Chandra, V. Kumar, S.E. Werner, and T.W. Odom, ACS Omega 2, 4878-4884 (2017). “Separation of Stabilized MOPS Gold Nanostars by Density Gradient Centrifugation” doi: 10.1021/acsomega.7b00871

134. J. Yue, T.J. Feliciano, W. Li, A. Lee, and T. W. Odom, Bioconjugate Chem. 28, 1791-1800 (2017). “Gold Nanoparticle Size and Shape Effects on Cellular Uptake and Intracellular Distribution of siRNA Nanoconstructs” doi: 10.1021/acs.bioconjchem.7b00252

124. K.S.B. Culver, Y.J. Shin, M.W. Rotz, T.J. Meade, M.C. Hersam, and T.W. Odom, J. Phys. Chem. C 120, 22103-22109 (2016). “Shape-Dependent Relaxivity of Nanoparticle-Based T1 Magnetic Resonance Imaging Contrast Agents”
doi: 10.1021/acs.jpcc.6b08362

123. K. Chandra, K.S.B. Culver, S.E. Werner, R.C. Lee, and T.W. Odom, Chemistry of Materials 28, 6763-6769 (2016). “Manipulating the Anisotropic Structure of Gold Nanostars using Good’s Buffer”
doi: 10.1021/acs.chemmater.6b03242

119. Y. Hua, K. Chandra, D.H.M. Dam, G.P. Wiederrecht, and T.W. Odom, J. Phys. Chem. Lett.6, 4904–4908 (2015). “Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles”
doi: 10.1021/acs.jpclett.5b02263

117. H. Lee, D.H.M. Dam, J.W. Ha, J. Yue, and T.W. Odom, ACS Nano 9, 9859–9867 (2015). “Enhanced Human Epidermal Growth Factor Receptor 2 Degradation in Breast Cancer Cells by Lysosome-Targeting Gold Nanoconstructs”
doi: 10.1021/acsnano.5b05138

112. M.W. Rotz, K.S.B. Culver, G. Parigi, K.W. MacRenaris, C. Luchinat, T.W. Odom, and T. J. Meade, ACS Nano 9, 3385–3396 (2015). “High Relaxivity Gd(III)-DNA Gold Nanostars: Investigation of Shape Effects on Proton Relaxation”
doi: 10.1021/nn5070953

111. D.H.M. Dam, H. Lee, R.C. Lee, K.H. Kim, N.L. Kelleher, and T.W. Odom, Bioconjugate Chem. 26, 279–285 (2015). “Tunable Loading of Oligonucleotides with Secondary Structure on Gold Nanoparticles through a pH-driven Method”
doi: 10.1021/bc500562s

110. H. Lee and T.W. Odom, Nanomedicine 10, 177-180 (2015) “Controlling Ligand Density on Nanoparticles as a Means to Enhance Biological Activity”
doi: 10.2217/nnm.14.204

109. D.H.M. Dam, K.S.B. Culver, I. Kandela, R.C. Lee, K. Chandra, H. Lee, C. Mantis, A. Ugolkov, A.P. Mazar, and T.W. Odom, Nanomedicine 11, 671-679 (2015). “Biodistribution and in Vivo Toxicity of Aptamer-Loaded Gold Nanostars”
doi: 10.1016/j.nano.2014.10.005

104. D.H.M. Dam, R.C. Lee, and T.W. Odom, Nano Letters 14, 2843–2848 (2014). “Improved in Vitro Efficacy of Gold Nanoconstructs by Increased Loading of G-quadruplex Aptamer”
doi: 10.1021/nl500844m

102. D.H.M. Dam, K.S.B. Culver, and T.W. Odom, Mol. Pharmaceutics. 11, 580–587 (2014). “Grafting Aptamers onto Gold Nanostars Increases in Vitro Efficacy in a Wide Range of Cancer Cell Types”
doi: 10.1021/mp4005657

96. J.Y. Lin, A.D. Stuparu, M.D. Huntington, M. Mrksich, and T.W. Odom, J. Phys. Chem. C 117, 5286-5292 (2013). “Nanopatterned Substrates Increase Surface Sensitivity for Real-Time Biosensing”
doi: 10.1021/jp401598a

95. D.H.M. Dam, K.S.B. Culver, P.N. Sisco, and T.W. Odom, Therapeutic Delivery 11, 1263-1267 (2012). “Shining Light on Nuclear-Targeted Therapy using Gold Nanostar Constructs”
doi: 10.4155/tde.12.107

85. D.H.M. Dam, J. Lee, P. Sisco, D. Co, M. Zhang, M.R. Wasielewski, and T.W. Odom, ACS Nano 6, 3318-3326 (2012). “Direct Observation of Nanoparticle-Cancer Cell Nucleus Interactions.”
doi: 10.1021/nn300296p

69. H. Gao, J.-C. Yang, J.Y. Lin, A. Stuparu, M.H. Lee, M. Mrksich, and T.W. Odom, Nano Lett. 10, 2549-2554 (2010). “Using the Angle-Dependent Resonances of Molded Plasmonic Crystals to Improve the Sensitivities of Biosensors.”
doi: 10.1021/nl101165r

45. L. Wang, M. H. Lee, J. Barton, L. Hughes, and T.W. Odom, JACS 130, 2142-2143 (2008). “Shape-Control of Protein Crystals in Patterned Microwells.”
doi: 10.1021/ja077956v