Materials and Nanofabrication Publications


164. S. Deng, D. Rhee, W-K. Lee, S. Che, B. Keisham, V. Berry, and T.W. Odom, Nano Lett. ASAP (2019). “Graphene Wrinkles Enable Spatially Defined Chemistry” doi: 10.1021/acs.nanolett.9b02178

161. W-K. Lee and T.W. Odom, ACS Nano 13, 6170-6177 (2019). “Designing Hierarchical Nanostructures from Conformable and Deformable Thin Materials” doi: 10.1021/acsnano.9b03862

153. Y. Xue, W-K. Lee, J. Yuan, T.W. Odom, and Y. Huang, Langmuir 34, 15749-15753 (2018). “Mechanics Modeling of Hierarchical Wrinkle Structures from Sequential Release of Pre-strain” doi: 10.1021/acs.langmuir.8b03498

151. W-K. Lee, W-B. Jung, D. Rhee, J. Hu, Y-A.L. Lee, C. Jacobson, H-T. Jung, and T.W. Odom, Adv. Mater. 30 1706657 (2018). “Monolithic Polymer Nanoridges with Programmable Wetting Transitions” doi: 10.1002/adma.201706657

144. W-B. Jung, K.M. Cho, W-K. Lee, T.W. Odom, and H-T. Jung, ACS Appl. Mater. Interfaces 10 1347-1355 (2017). “Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces” doi: 10.1021/acsami.7b14011

137. W-K. Lee, S. Yu, C.J. Engel, T. Reese, D. Rhee, W. Chen, and T.W. Odom, Proc. Natl. Acad. Sci. U.S.A. 114, 8734-8739 (2017). “Concurrent design of quasi-random photonic nanostructures” doi: 10.1073/pnas.1704711114

136. A. Paul, M. Stührenberg, S. Chen, D. Rhee, W-K. Lee, T.W. Odom, S. Heilshorn, and A. Enejder, Soft Matter 13, 5665-5675 (2017). “Micro- and nano-patterned elastin-like polypeptide hydrogels for stem cell culture” doi: 10.1039/C7SM00487G

133. S. Yu, Y. Zhang, C. Wang, W-K. Lee, B. Dong, T.W. Odom, C. Sun, and W. Chen, J. Mech. Des. 139, 071401 (2017). “Characterization and Design of Functional Quasi-Random Nanostructured Materials Using Spectral Density Function” doi: 10.1115/1.4036582

132. D. Rhee, W-K. Lee, and T.W. Odom, Angewandte Chemie 56, 6523-6527 (2017). “Crack-Free, Soft Wrinkles Enable Switchable Anisotropic Wetting” doi: 10.1002/anie.201701968

129. J.T. Paci, C.T. Chapman, W-K. Lee, T. W. Odom, and G.C. Schatz, ACS Applied Materials & Interfaces 9, 9079-9088 (2017). “Wrinkles in Polytetrafluoroethylene on Polystyrene: Persistence Lengths and the Effect of Nanoinclusions” doi: 10.1021/acsami.6b14789

125. W-K. Lee, J. Kang, K-S. Chen, C.J. Engel, W-B. Jung, D. Rhee, M.C. Hersam, and T.W. Odom, Nano Lett. 16, 7121-7127 (2016). “Multiscale, Hierarchical Patterning of Graphene by Conformal Wrinkling” doi: 10.1021/acs.nanolett.6b03415

122. C.T. Chapman, J.T. Paci, W-K. Lee, C.J. Engel, T.W. Odom, and G. C. Schatz, ACS Appl. Mater. Interfaces 8, 24339-24344 (2016). “Interfacial Effects on Nanoscale Wrinkling in Gold-Covered Polystyrene” doi: 10.1021/acsami.6b08554

121. W-K. Lee, W. Jung, S. Nagel, and T.W. Odom, Nano Lett. 16, 3774-3779 (2016). “Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles” doi: 10.1021/acs.nanolett.6b01169

116. W-K. Lee, C.J. Engel, M.D. Huntington, J. Hu, and T.W. Odom, Nano Letters 15, 5624–5629 (2015). “Controlled Three-Dimensional Hierarchical Structuring by Memory-Based, Sequential Wrinkling” doi: 10.1021/acs.nanolett.5b02394

107. I. Hod, W. Bury, D.M. Karlin, P. Deria, C. Kung, M.J. Katz, M. So, B. Klahr, D. Jin, Y. Chung, T.W. Odom, O.K. Farha, and J.T. Hupp, Adv. Mater. 26, 6295-6300 (2014). “Directed Growth of Electroactive Metal Organic Framework Thin Films Using Electrophoretic Deposition” doi: 10.1002/adma.201401940

106. M.D. Huntington, C.J. Engel, and T.W. Odom, Angew. Chemie. 126, 8255–8259 (2014). “Controlling the Orientation of Nanowrinkles and Nanofolds by Patterning Strain”
doi: 10.1002/anie.201404483

98. M.D. Huntington, C.J. Engel, A.J. Hryn, and T.W. Odom, ACS Appl. Mater. Interfaces 5, 6438–6442 (2013). “Polymer Nanowrinkles with Continuously Tunable Wavelengths”
doi: 10.1021/am402166d

97. T.W. Odom, Nature 496, 40–41 (2013). “Materials science: The same, but better”
doi: 10.1038/496040a

90. S.M. Lubin, W. Zhou, A.J. Hryn, M.D. Huntington, and T.W. Odom, Nano Letters 12, 4948–4952 (2012). “High-Rotational Symmetry Lattices Fabricated by Moiré Nanolithography”
doi: 10.1021/nl302535p

89. T.W. Odom, Nature Nanotech. 7, 550-551 (2012). “Colours at the Nanoscale: Printable Stained Glass”
doi: 10.1038/nnano.2012.135

84. T.W. Odom and M.D. Huntington, SPIE Newsroom (2012). “Benchtop Photolithography Tool offers a Low-cost Route to Nanomanufacturing.”
doi: 10.1117/2.1201202.004132

79. M.D. Huntington and T.W. Odom, Small 7, 3144-3147 (2011). “A Portable, Benchtop Photolithography System Based on a Solid-State Light Source.”
doi:10.1002/smll.201101209

73. M. Chia, C.M. Sweeney, and T.W. Odom, J. Chem. Educ. 88, 461-464 (2011). “Chemistry in Microfluidic Channels.”
doi: 10.1021/ed1008624

71. M.H. Lee, M.D. Huntington, W. Zhou, J.-C. Yang, and T.W. Odom, Nano Lett. 11, 311-315 (2011). “Programmable Soft Lithography: Solvent-assisted Nanoscale Embossing.”
doi: 10.1021/nl102206x

68. M. Lee, J.Y. Lin, and T.W. Odom, Angew. Chemie. 49, 3057-3060 (2010). “Large-area Nanocontact Printing using Metallic Nanostencil Masks.”
doi: 10.1002/anie.200906800

67. P. Li, C.L. Stender, E. Ringe, L.D. Marks, and T.W. Odom, Small 6, 1096-1099 (2010). “Synthesis of TaS2 Nanotubes from Ta2O5 Nanotube Templates.”
doi: 10.1002/smll.201000226

66. K. A. Stoerzinger, W. Hasan, J. Y. Lin, A. Robles, and T.W. Odom, J. Phys. Chem. Lett. 1, 1046-1050 (2010). “Screening Nanopyramid Assemblies to Optimize Surface Enhanced Raman Scattering.”
doi: 10.1021/jz100095b

63. T.W. Odom, MRS Bulletin 35, 66-73 (2010). “Materials Screening and Applications of Plasmonic Crystals.”
doi: 10.1557/mrs2010.618

60. E. You, R. Ahn, M.H. Lee, M.R. Raja, T.V. O’Halloran, and T.W. Odom, JACS 131, 10863-10865 (2009). “Size Control of Arsenic Trioxide Nanocrystals Grown in Nanowells.”
doi: 10.1021/ja902117b

59. J.E. Barton, C.L. Stender, P. Li, and T.W. Odom, J. Mater. Chem. 19, 4896-4898 (2009). “Structural Control of Anodized Tantalum Oxide Nanotubes.”
doi: 10.1039/b904964a

57. W. Hasan, C.L. Stender, M.H. Lee, C.L. Nehl, J. Lee, and T.W. Odom, Nano Lett. 9, 1555-1558 (2009). “Tailoring the Structure of Nanopyramids for Optical Heat Generation.”
doi: 10.1021/nl803647n

53. J. Lee, W. Hasan, and T.W. Odom, J. Phys. Chem. C 113, 2205-2207 (2009). “Tuning the Thickness and Orientation of Single Au Pyramids for Improved Refractive Index Sensitivities.”
doi: 10.1021/jp8111155

52. T.W. Odom and M.-P. Pileni, Acc. Chem. Res. 41, 1565 (2008). “Guest Editorial: Nanoscience.”
doi: 10.1021/ar800253n

50. J. Henzie, J. Lee, M.H. Lee, W. Hasan, and T.W. Odom, Ann. Rev. of Phys. Chem. 60, 147-165 (2009). “Nanofabrication of Plasmonic Structures.”
doi: 10.1146/annurev.physchem.040808.090352

49. J. Lee, W. Hasan, C.L. Stender, and T.W. Odom, Acc. Chem. Res. 41, 1762-1771 (2008). “Pyramids: A Platform for Designing
Multifunctional Plasmonic Particles.”
doi: 10.1021/ar800126p

48. C.L. Stender, P. Sekar, and T.W. Odom, J. Solid State Chem. 181, 1621-1627 (2008). “Solid State Chemistry on a Surface and in a Beaker: Unconventional Routes to Transition Metal Chalcogenide Nanomaterials.”
doi: 10.1016/j.jssc.2008.06.004

47. T.W. Odom and C.L. Nehl, ACS Nano 2, 612-616 (2008). “How Gold Nanoparticles have Stayed in the Light: the 3Ms Principle.”
doi: 10.1021/nn800178z

42. M.H. Lee, H. Gao, J. Henzie, and T.W. Odom, Small 3, 2029-2033 (2007). “Microscale Arrays of Nanoscale Holes.”
doi: 0.1002/smll.200700499

41. W. Hasan, J. Lee, J. Henzie, and T.W. Odom, J. of Phys. Chem. C 111, 17176-17179 (2007). doi: 10.1021/jp709607s. “Selective Functionalization and Spectral Identification of Gold Nanopyramids.”
PDF Reprint

40. J. Henzie, M.H. Lee, and T.W. Odom, Nature Nanotech. 2, 549-554 (2007). “Multiscale Patterning of Plasmonic Metamaterials.”
PDF Reprint

39. V. Meenakshi, Y. Babayan, and T.W. Odom, J. Chem. Ed. 84, 1795-1798 (2007). “Benchtop Nanoscale Patterning using Soft Lithography.”
PDF Reprint

38. C.L. Stender and T.W. Odom, J. Mater. Chem. 17, 1866-1869 (2007). “Chemical Nanofabrication: A General Route to Surface-Patterned and Free-standing Transition Metal Chalcogenide Nanostructures.”
PDF Reprint

37. S.P. Price, J. Henzie, and T.W. Odom, Small 3, 372-374 (2007). “Addressable, Large-area Nanoscale Organic Light Emitting Diodes.”
PDF Reprint

33. J. Henzie, J.E. Barton, C.L. Stender, and T.W. Odom, Accts. Chem. Res. 39, 249-257 (2006). “Large-area Nanoscale Patterning: Chemistry meets Fabrication.”
PDF Reprint

32. E.C. Greyson, J.E. Barton, and T.W. Odom, Small 2, 368-371 (2006). “Tetrahedral Zinc Blende SnS Nano- and Microcrystals.”
PDF Reprint

31. C.L. Stender, E. C. Greyson, Y. Babayan, and T.W. Odom, Adv. Mat. 17, 2837-2841 (2005). “Patterned MoS2-Nanostructures over cm2 -Areas.”
PDF Reprint

27. J. Henzie, E.-S. Kwak, and T.W. Odom, Nano Letters 5, 1199-1202 (2005). “Mesoscale Metallic Pyramids with Nanoscale Tips.”
PDF Reprint

26. T.W. Odom, Small 1, 462 (2005). “The Nano-Micro Interface: Bridging Micro and Nano Worlds. Edited by Hans-Jörg Fecht and Matthias Werner.”
PDF Reprint

25. P. Sekar, E.C. Greyson, J.E. Barton, and T.W. Odom, JACS 127, 2054-2055 (2005). “Synthesis of Nanoscale NbSe2 Materials from Molecular Precursors.
PDF Reprint

24. N. Damean, B. A. Parviz, J.N. Lee, T.W. Odom, and G. M. Whitesides, J. of Micromechanics and Microengineering, 15, 29-34 (2005). “Composite Ferromagnetic Photoresist for the Fabrication of MicroElectroMechanical Systems.”
PDF Reprint

23. E.C. Greyson, Y. Babayan, and T.W. Odom, Adv. Mat. 16, 1348-1352 (2004). “Directed Growth of Ordered Arrays of Small Diameter ZnO Nanowires.”
PDF Reprint

22. Y. Babayan, J.E. Barton, E.C. Greyson, and T.W. Odom, Adv. Mat. 16, 1341-1345 (2004). “Templated and Hierarchical Assembly of CdSe/ZnS Quantum Dots.”
PDF Reprint

21. J.E. Barton and T.W. Odom, Nano Letters 4, 1525-1528 (2004). “Mass-limited Growth in Zeptoliter-Beakers: A General Approach to Nanoparticle Synthesis.”
PDF Reprint

20. H. Wu, T.W. Odom, D.T. Chiu and G.M. Whitesides, JACS 125, 554-559 (2003). “Fabrication of Complex Three-Dimensional Microchannels in PDMS.”
PDF Reprint

19. T.W. Odom, V.R. Thalladi, J.C. Love and G.M. Whitesides, JACS 124, 12112-12113 (2002). “Generation of 30-50 nm Structures using Easily Fabricated, Composite PDMS Masks.”
PDF Reprint

18. H. Wu, T.W. Odom, and G.M. Whitesides, Adv. Mat. 14, 1213-1216 (2002). “Generation of Chrome Masks with Micrometer Features using Microlens Lithography.”
PDF Reprint

17. H. Wu, T.W. Odom, and G.M. Whitesides, Anal. Chem. 74, 3267-3273 (2002). “Reduction Photolithography using Microlens Arrays: Applications in Grayscale Photolithography.”
PDF Reprint

16. H. Wu, T.W. Odom, and G.M. Whitesides, JACS 124, 7288-7289 (2002). “Connectivity of Features in Microlens Array Reduction Photolithography: Generation of Various Patterns with a Single Photomask.”
PDF Reprint

15. T.W. Odom, J.C. Love, D.B. Wolfe, K.E. Paul and G.M. Whitesides, Langmuir 18, 5314-5320 (2002). “Improved Pattern Transfer in Soft Lithography Using Composite Stamps.”
PDF Reprint

14. T.W. Odom, J.L. Huang and C.M. Lieber Ann. NY Acad. Sci. 960, 203-215 (2002). “Single-walled Carbon Nanotubes–from Fundamental Studies to New Device Concepts.”

13. T.W. Odom. Aust. J. of Chem. 54, 601-604 (2002). “Electronic Properties of Single-walled Carbon Nanotubes.”
PDF Reprint

12. T.W. Odom, J.L. Huang and C.M. Lieber, J. Phys.: Cond. Matter 14, 145-167 (2002). Topical Review: “STM Studies of Single-walled Carbon Nanotubes.”
PDF Reprint

11. T.W. Odom, J.H. Hafner and C.M. Lieber, Applied Physics 80, 173-211 (2001). “Scanning Probe Microscopy Studies of Carbon Nanotubes.”
PDF Reprint

10. T.W. Odom, J.L. Huang and C.M. Lieber, Science 290, 1549-1552 (2000). “Magnetic Clusters on Single-Walled Carbon Nanotubes: The Kondo Effect in a One-Dimensional Host.”
PDF Reprint

9. P. Kim, T.W. Odom, J.L. Huang and C.M. Lieber, Carbon 38, 1741-1744 (2000). “STM Study of Single-Walled Carbon Nanotubes.”
PDF Reprint

8. C.L. Cheung, J.H. Hafner, T.W. Odom, K. Kim and C.M. Lieber, Appl. Phys. Lett. 76, 3136-3138 (2000). “Growth and Fabrication with Single-walled Carbon Nanotube Probes.”
PDF Reprint

7. T.W. Odom, J.L. Huang, P. Kim and C.M. Lieber, J. Phys. Chem. B 104, 2794-2809 (2000). “Structure and Electronic Properties of Carbon Nanotubes.”
PDF Reprint

6. P. Kim, T.W. Odom and C.M. Lieber, AIP Conference Proceedings 486, (1999). “Electronic Properties of Novel Materials: Electronic Structures and Applications of Carbon Nanotubes.”

5. P. Kim, T.W. Odom, J.L. Huang and C.M. Lieber, Phys. Rev. Lett. 82, 1225-1228 (1999). “Electronic Density of States of Atomically Resolved Single-walled Carbon Nanotubes.”
PDF Reprint

4. J. Hu, T.W. Odom and C.M. Lieber, Acc. Chem. Res. 32, 435-445 (1999). “Chemistry and Physics in One-Dimension: Synthesis and Properties of Nanowires and Nanotubes.”
PDF Reprint

3. S.S. Wong, A.T. Woolley, T.W. Odom, J.L. Huang, P. Kim, D.V. Vezenov and C.M. Lieber, Appl. Phys. Lett. 73, 3465-3467 (1998). “Single-walled Carbon Nanotube Probes for High-Resolution Imaging.”
PDF Reprint

2. T.W. Odom, J.L. Huang, P. Kim, M. Ouyang and C.M. Lieber, J. Mater. Res. 13, 2380-2388 (1998). “Scanning Tunneling Microscopy and Spectroscopy Studies of Single-walled Carbon Nanotubes.
PDF Reprint

1. T.W. Odom, J.L. Huang, P. Kim and C.M. Lieber, Nature 391, 62-64 (1998). “Atomic Structure and Electronic Properties of Single-walled Carbon Nanotubes.
PDF Reprint